/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^21 - 21*x^19 - 7*x^18 + 189*x^17 + 126*x^16 - 1001*x^15 - 945*x^14 + 3675*x^13 + 4487*x^12 - 10143*x^11 - 16989*x^10 + 17547*x^9 + 48384*x^8 - 783*x^7 - 77111*x^6 - 58644*x^5 + 31179*x^4 + 69828*x^3 + 39132*x^2 + 7272*x - 352, 21, 137, [9, 6], 8260747249204096146622706591443293419881427712, [2, 3, 313, 1163], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, 1/2*a^12 - 1/2*a^9 - 1/2*a^7 - 1/2*a^5 - 1/2*a^4 - 1/2*a, 1/2*a^13 - 1/2*a^10 - 1/2*a^8 - 1/2*a^6 - 1/2*a^5 - 1/2*a^2, 1/2*a^14 - 1/2*a^11 - 1/2*a^9 - 1/2*a^7 - 1/2*a^6 - 1/2*a^3, 1/4*a^15 - 1/4*a^13 - 1/4*a^12 - 1/2*a^11 - 1/2*a^10 - 1/4*a^7 + 1/4*a^6 + 1/4*a^5 + 1/4*a^4 + 1/4*a^2 - 1/2*a, 1/4*a^16 - 1/4*a^14 - 1/4*a^13 - 1/2*a^11 - 1/2*a^9 - 1/4*a^8 - 1/4*a^7 + 1/4*a^6 - 1/4*a^5 - 1/2*a^4 + 1/4*a^3 - 1/2*a^2 - 1/2*a, 1/4*a^17 - 1/4*a^14 - 1/4*a^13 - 1/4*a^12 - 1/2*a^11 + 1/4*a^9 - 1/4*a^8 - 1/2*a^7 + 1/4*a^5 - 1/2*a^3 - 1/4*a^2, 1/8*a^18 - 1/8*a^15 + 1/8*a^14 + 1/8*a^13 - 1/4*a^12 - 1/4*a^11 + 3/8*a^10 - 3/8*a^9 - 1/2*a^8 - 1/4*a^7 + 1/8*a^6 + 1/4*a^5 + 1/4*a^4 + 1/8*a^3 - 1/4*a^2 - 1/2*a, 1/8*a^19 - 1/8*a^16 - 1/8*a^15 + 1/8*a^14 - 1/8*a^11 + 1/8*a^10 - 1/2*a^9 - 1/4*a^8 + 3/8*a^7 - 1/8*a^4 - 1/4*a^3 + 1/4*a^2 - 1/2*a, 1/8*a^20 - 1/8*a^17 - 1/8*a^16 - 1/8*a^15 - 1/4*a^13 + 1/8*a^12 - 3/8*a^11 - 1/2*a^10 - 1/4*a^9 - 1/8*a^8 + 1/4*a^7 + 1/4*a^6 + 1/8*a^5 - 1/2*a^4 + 1/4*a^3 - 1/4*a^2 - 1/2*a], 0, 1, [], 1, [ 19*a^(18) - 342*a^(16) - (321)/(4)*a^(15) + 2565*a^(14) + (4815)/(4)*a^(13) - (46187)/(4)*a^(12) - (14445)/(2)*a^(11) + 38526*a^(10) + 31528*a^(9) - (194373)/(2)*a^(8) - (484983)/(4)*a^(7) + (517393)/(4)*a^(6) + (1142937)/(4)*a^(5) + (146415)/(4)*a^(4) - 248770*a^(3) - (844983)/(4)*a^(2) - (104781)/(2)*a + 2411 , a^(18) - 18*a^(16) - 4*a^(15) + 135*a^(14) + 60*a^(13) - 608*a^(12) - 360*a^(11) + 2031*a^(10) + 1583*a^(9) - 5130*a^(8) - 6147*a^(7) + 6906*a^(6) + 14553*a^(5) + 1494*a^(4) - 12734*a^(3) - 10503*a^(2) - 2541*a + 117 , (233)/(8)*a^(18) - (2097)/(4)*a^(16) - (987)/(8)*a^(15) + (31455)/(8)*a^(14) + (14805)/(8)*a^(13) - (35399)/(2)*a^(12) - (44415)/(4)*a^(11) + (472407)/(8)*a^(10) + (387617)/(8)*a^(9) - (595809)/(4)*a^(8) - (744939)/(4)*a^(7) + (1584945)/(8)*a^(6) + (1755135)/(4)*a^(5) + 56808*a^(4) - (3055349)/(8)*a^(3) - 324810*a^(2) - 80655*a + 3709 , (85)/(4)*a^(18) - (765)/(2)*a^(16) - 91*a^(15) + (11475)/(4)*a^(14) + 1365*a^(13) - (51649)/(4)*a^(12) - 8190*a^(11) + (172263)/(4)*a^(10) + (142751)/(4)*a^(9) - 108594*a^(8) - (547659)/(4)*a^(7) + (288119)/(2)*a^(6) + (1289169)/(4)*a^(5) + (174045)/(4)*a^(4) - (1120821)/(4)*a^(3) - (959571)/(4)*a^(2) - 59922*a + 2753 , (201)/(4)*a^(18) - (1809)/(2)*a^(16) - (849)/(4)*a^(15) + (27135)/(4)*a^(14) + (12735)/(4)*a^(13) - 30538*a^(12) - (38205)/(2)*a^(11) + (407559)/(4)*a^(10) + (333547)/(4)*a^(9) - (514053)/(2)*a^(8) - (641349)/(2)*a^(7) + (1368279)/(4)*a^(6) + (1511433)/(2)*a^(5) + 96876*a^(4) - (2631745)/(4)*a^(3) - (1117557)/(2)*a^(2) - (277221)/(2)*a + 6375 , (321)/(8)*a^(18) - (2889)/(4)*a^(16) - (1347)/(8)*a^(15) + (43335)/(8)*a^(14) + (20205)/(8)*a^(13) - (48773)/(2)*a^(12) - (60615)/(4)*a^(11) + (651039)/(8)*a^(10) + (529649)/(8)*a^(9) - (821313)/(4)*a^(8) - (1019583)/(4)*a^(7) + (2189489)/(8)*a^(6) + (2404107)/(4)*a^(5) + 75063*a^(4) - (4188901)/(8)*a^(3) - 442953*a^(2) - 109497*a + 5039 , (239)/(8)*a^(20) + (333)/(8)*a^(19) - (2063)/(4)*a^(18) - (7053)/(8)*a^(17) + (6927)/(2)*a^(16) + 7519*a^(15) - (100563)/(8)*a^(14) - (71851)/(2)*a^(13) + (251483)/(8)*a^(12) + (513669)/(4)*a^(11) - (312997)/(8)*a^(10) - (1504915)/(4)*a^(9) - (1412035)/(8)*a^(8) + (4916263)/(8)*a^(7) + (3384219)/(4)*a^(6) - (83021)/(8)*a^(5) - (6932647)/(8)*a^(4) - (3289891)/(4)*a^(3) - (659541)/(2)*a^(2) - (93189)/(2)*a + 2401 , (467)/(8)*a^(20) + (411)/(4)*a^(19) - (7935)/(8)*a^(18) - (16745)/(8)*a^(17) + (51133)/(8)*a^(16) + (69125)/(4)*a^(15) - (168765)/(8)*a^(14) - (645661)/(8)*a^(13) + (352215)/(8)*a^(12) + (2258067)/(8)*a^(11) - (84935)/(8)*a^(10) - (6391939)/(8)*a^(9) - (4423391)/(8)*a^(8) + 1201538*a^(7) + (16343361)/(8)*a^(6) + (2444589)/(8)*a^(5) - (3742041)/(2)*a^(4) - (16405815)/(8)*a^(3) - (3663181)/(4)*a^(2) - 146269*a + 7323 , (283)/(8)*a^(20) - (299)/(2)*a^(19) - (1855)/(4)*a^(18) + (20311)/(8)*a^(17) + (18463)/(8)*a^(16) - (149145)/(8)*a^(15) - (31343)/(4)*a^(14) + (176549)/(2)*a^(13) + (198081)/(8)*a^(12) - (2480133)/(8)*a^(11) - (333801)/(4)*a^(10) + (3303085)/(4)*a^(9) + (2605189)/(8)*a^(8) - (3176527)/(2)*a^(7) - (4144963)/(4)*a^(6) + (14707551)/(8)*a^(5) + (3875905)/(2)*a^(4) - (2694469)/(4)*a^(3) - 1520514*a^(2) - (1015883)/(2)*a + 22433 , (1573365)/(8)*a^(20) - (1054969)/(8)*a^(19) - (32947089)/(8)*a^(18) + (12356223)/(8)*a^(17) + (150064811)/(4)*a^(16) - (23418021)/(8)*a^(15) - 205936624*a^(14) - (248413591)/(8)*a^(13) + (6402577729)/(8)*a^(12) + (555679495)/(2)*a^(11) - (4794711859)/(2)*a^(10) - (12294978447)/(8)*a^(9) + (41110027707)/(8)*a^(8) + (45933380989)/(8)*a^(7) - (44359693871)/(8)*a^(6) - (92093169745)/(8)*a^(5) - (12487623911)/(8)*a^(4) + (67900122477)/(8)*a^(3) + (13606191081)/(2)*a^(2) + 1572594589*a - 73114917 , (33035)/(4)*a^(20) + (107331)/(8)*a^(19) - 160777*a^(18) - (553691)/(2)*a^(17) + (10204169)/(8)*a^(16) + (19135861)/(8)*a^(15) - (46328465)/(8)*a^(14) - (48365325)/(4)*a^(13) + (75694663)/(4)*a^(12) + (364787087)/(8)*a^(11) - (353803581)/(8)*a^(10) - (566505237)/(4)*a^(9) + (62985161)/(2)*a^(8) + (2341987945)/(8)*a^(7) + 137743411*a^(6) - 261962234*a^(5) - (2337484489)/(8)*a^(4) - (34852253)/(2)*a^(3) + (383454211)/(4)*a^(2) + (68838219)/(2)*a - 1504683 , (710405)/(8)*a^(20) - (605215)/(4)*a^(19) - (11672093)/(8)*a^(18) + (18811913)/(8)*a^(17) + (80879573)/(8)*a^(16) - (61720383)/(4)*a^(15) - (356941597)/(8)*a^(14) + (537927323)/(8)*a^(13) + (1217485085)/(8)*a^(12) - (1705414347)/(8)*a^(11) - (3360441777)/(8)*a^(10) + (3525888747)/(8)*a^(9) + (6797591473)/(8)*a^(8) - (2357777629)/(4)*a^(7) - (9134381619)/(8)*a^(6) + (5219891921)/(8)*a^(5) + (2496490681)/(2)*a^(4) - (3197272751)/(8)*a^(3) - (4461527687)/(4)*a^(2) - 397904207*a + 17448383 , (743)/(4)*a^(20) - (1981)/(8)*a^(19) - (14543)/(4)*a^(18) + (14717)/(4)*a^(17) + (251005)/(8)*a^(16) - (164313)/(8)*a^(15) - (1343457)/(8)*a^(14) + (248731)/(4)*a^(13) + (1295757)/(2)*a^(12) - (692121)/(8)*a^(11) - (15614443)/(8)*a^(10) - (1564299)/(4)*a^(9) + (17342187)/(4)*a^(8) + (23517389)/(8)*a^(7) - (21432157)/(4)*a^(6) - (28992123)/(4)*a^(5) + (5171475)/(8)*a^(4) + (24120227)/(4)*a^(3) + (7820893)/(2)*a^(2) + 762225*a - 36445 , (301219)/(8)*a^(20) + (4606571)/(8)*a^(19) - (4121377)/(2)*a^(18) - (84180161)/(8)*a^(17) + (110203371)/(4)*a^(16) + (171865101)/(2)*a^(15) - (1385628207)/(8)*a^(14) - (1806432669)/(4)*a^(13) + (5588561275)/(8)*a^(12) + (3509045659)/(2)*a^(11) - (16351665365)/(8)*a^(10) - (10952326799)/(2)*a^(9) + (29316653685)/(8)*a^(8) + (106409200785)/(8)*a^(7) - 706107039*a^(6) - (161371007501)/(8)*a^(5) - (84677512169)/(8)*a^(4) + (23215071995)/(2)*a^(3) + 13768836830*a^(2) + (7747635467)/(2)*a - 174870785 ], 13679770683900000, [[x^7 - x^6 - 15*x^5 + 20*x^4 + 33*x^3 - 22*x^2 - 32*x - 8, 1]]]