Normalized defining polynomial
\( x^{21} - x^{20} - 137 x^{19} - 55 x^{18} + 8128 x^{17} + 14560 x^{16} - 257738 x^{15} - 845833 x^{14} + 4193300 x^{13} + 23288610 x^{12} - 17244907 x^{11} - 323062916 x^{10} - 489872337 x^{9} + 1711520805 x^{8} + 7122604523 x^{7} + 5785803662 x^{6} - 20281096725 x^{5} - 67342237893 x^{4} - 95716966884 x^{3} - 76348620241 x^{2} - 33392383702 x - 6277898279 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81481499745172593520904633512372136771832805573=13^{9}\cdot 61^{2}\cdot 109^{6}\cdot 35089331371^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $171.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61, 109, 35089331371$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{6}{13} a^{16} + \frac{4}{13} a^{15} - \frac{6}{13} a^{14} - \frac{4}{13} a^{13} - \frac{3}{13} a^{11} + \frac{6}{13} a^{10} + \frac{2}{13} a^{9} - \frac{6}{13} a^{8} + \frac{2}{13} a^{7} - \frac{2}{13} a^{6} - \frac{6}{13} a^{5} - \frac{3}{13} a^{4} - \frac{2}{13} a^{3} + \frac{4}{13} a^{2} - \frac{6}{13} a - \frac{4}{13}$, $\frac{1}{13} a^{18} - \frac{6}{13} a^{16} - \frac{4}{13} a^{15} + \frac{6}{13} a^{14} - \frac{2}{13} a^{13} - \frac{3}{13} a^{12} - \frac{2}{13} a^{11} + \frac{5}{13} a^{10} - \frac{5}{13} a^{9} - \frac{1}{13} a^{8} - \frac{1}{13} a^{7} + \frac{6}{13} a^{6} - \frac{6}{13} a^{5} + \frac{3}{13} a^{4} + \frac{3}{13} a^{3} - \frac{4}{13} a^{2} + \frac{6}{13} a - \frac{2}{13}$, $\frac{1}{13} a^{19} + \frac{6}{13} a^{16} + \frac{4}{13} a^{15} + \frac{1}{13} a^{14} - \frac{1}{13} a^{13} - \frac{2}{13} a^{12} + \frac{5}{13} a^{10} - \frac{2}{13} a^{9} + \frac{2}{13} a^{8} + \frac{5}{13} a^{7} - \frac{5}{13} a^{6} + \frac{6}{13} a^{5} - \frac{2}{13} a^{4} - \frac{3}{13} a^{3} + \frac{4}{13} a^{2} + \frac{1}{13} a + \frac{2}{13}$, $\frac{1}{806547465274980162631231701573239618818415264319016550374799} a^{20} + \frac{23824802092888372104768834224025639858918450527258144209245}{806547465274980162631231701573239618818415264319016550374799} a^{19} - \frac{15014645854091717149724467516333185933414275052227058628380}{806547465274980162631231701573239618818415264319016550374799} a^{18} - \frac{16018061930685733001892645574329383412531124978942255093870}{806547465274980162631231701573239618818415264319016550374799} a^{17} - \frac{167897432015379488456963741652747769749240243824916659242729}{806547465274980162631231701573239618818415264319016550374799} a^{16} + \frac{171330651769101044670581975578856381684480076653438905083073}{806547465274980162631231701573239618818415264319016550374799} a^{15} + \frac{67704796984790478351365332728751118742384673707517772828430}{806547465274980162631231701573239618818415264319016550374799} a^{14} + \frac{393658511527171279515336689674418686761060300836464997123273}{806547465274980162631231701573239618818415264319016550374799} a^{13} - \frac{61525190977877272006268233803568337283507708121318922546626}{806547465274980162631231701573239618818415264319016550374799} a^{12} - \frac{127621644729316211573819752804171650961555532526651562582520}{806547465274980162631231701573239618818415264319016550374799} a^{11} - \frac{5072728609328271576144924438233639252995283278682207485571}{62042112713460012510094746274864586062955020332232042336523} a^{10} + \frac{25501448175290200437375256149802686360285939972728289543240}{806547465274980162631231701573239618818415264319016550374799} a^{9} + \frac{163661905860807180529610188979249524667893438143914677142650}{806547465274980162631231701573239618818415264319016550374799} a^{8} - \frac{273337797053394179344835341549075790814674841779788868510294}{806547465274980162631231701573239618818415264319016550374799} a^{7} + \frac{221568925212032607893317872322199221449846316682267807329687}{806547465274980162631231701573239618818415264319016550374799} a^{6} - \frac{34712941026777738172358195717570626385888476524361296881338}{806547465274980162631231701573239618818415264319016550374799} a^{5} + \frac{296659283767716770851149944999865128180207749282303241211155}{806547465274980162631231701573239618818415264319016550374799} a^{4} + \frac{290070958979267257251630929656149767893997737674134095043190}{806547465274980162631231701573239618818415264319016550374799} a^{3} + \frac{97000805170869756461988461673295920979338000471994820318401}{806547465274980162631231701573239618818415264319016550374799} a^{2} + \frac{39981255101629297032821923334628230130028300849134198544576}{806547465274980162631231701573239618818415264319016550374799} a - \frac{275141489326932789987970811912325242955150449779776849126079}{806547465274980162631231701573239618818415264319016550374799}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1752538318890000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 734832 |
| The 132 conjugacy class representatives for t21n118 are not computed |
| Character table for t21n118 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 61 | Data not computed | ||||||
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.12.6.1 | $x^{12} + 28490638 x^{6} - 15386239549 x^{2} + 202929113411761$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 35089331371 | Data not computed | ||||||