Normalized defining polynomial
\( x^{21} - 21 x^{19} - 14 x^{18} + 171 x^{17} + 228 x^{16} - 707 x^{15} - 1566 x^{14} + 1629 x^{13} + 6896 x^{12} + 81 x^{11} - 20322 x^{10} - 19128 x^{9} + 25776 x^{8} + 59865 x^{7} + 17162 x^{6} - 67500 x^{5} - 104184 x^{4} - 74576 x^{3} - 30240 x^{2} - 6720 x - 640 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7998462377958923195533222171657420800=2^{14}\cdot 3^{21}\cdot 5^{2}\cdot 11^{12}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{7}{64} a^{14} - \frac{29}{64} a^{12} + \frac{13}{32} a^{11} + \frac{9}{64} a^{10} - \frac{3}{16} a^{9} + \frac{13}{64} a^{8} - \frac{3}{32} a^{7} - \frac{19}{64} a^{6} + \frac{3}{8} a^{5} + \frac{9}{64} a^{2} - \frac{1}{16} a - \frac{7}{16}$, $\frac{1}{512} a^{17} + \frac{3}{512} a^{15} - \frac{39}{256} a^{14} - \frac{221}{512} a^{13} + \frac{53}{128} a^{12} + \frac{149}{512} a^{11} + \frac{49}{256} a^{10} - \frac{27}{512} a^{9} + \frac{5}{16} a^{8} - \frac{199}{512} a^{7} + \frac{95}{256} a^{6} - \frac{7}{32} a^{5} + \frac{1}{8} a^{4} + \frac{137}{512} a^{3} + \frac{85}{256} a^{2} + \frac{11}{128} a + \frac{23}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{3}{4096} a^{16} - \frac{21}{1024} a^{15} + \frac{447}{4096} a^{14} + \frac{839}{2048} a^{13} - \frac{1299}{4096} a^{12} - \frac{89}{512} a^{11} - \frac{1759}{4096} a^{10} - \frac{661}{2048} a^{9} + \frac{1017}{4096} a^{8} + \frac{403}{1024} a^{7} + \frac{261}{1024} a^{6} - \frac{39}{128} a^{5} - \frac{503}{4096} a^{4} + \frac{115}{512} a^{3} - \frac{37}{512} a^{2} + \frac{19}{128} a - \frac{87}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{7}{32768} a^{17} - \frac{45}{16384} a^{16} + \frac{615}{32768} a^{15} - \frac{207}{2048} a^{14} - \frac{12847}{32768} a^{13} + \frac{5039}{16384} a^{12} + \frac{3761}{32768} a^{11} + \frac{3621}{8192} a^{10} - \frac{12723}{32768} a^{9} + \frac{3885}{16384} a^{8} - \frac{1569}{8192} a^{7} + \frac{1631}{4096} a^{6} - \frac{2103}{32768} a^{5} - \frac{7229}{16384} a^{4} - \frac{267}{4096} a^{3} - \frac{437}{2048} a^{2} - \frac{419}{2048} a + \frac{343}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{17}{262144} a^{18} - \frac{3}{16384} a^{17} + \frac{75}{262144} a^{16} + \frac{189}{131072} a^{15} + \frac{49}{262144} a^{14} - \frac{367}{65536} a^{13} - \frac{1307}{262144} a^{12} + \frac{2141}{131072} a^{11} + \frac{8645}{262144} a^{10} - \frac{379}{32768} a^{9} - \frac{3149}{32768} a^{8} - \frac{769}{8192} a^{7} + \frac{10649}{262144} a^{6} + \frac{9615}{65536} a^{5} + \frac{2355}{65536} a^{4} - \frac{2667}{8192} a^{3} + \frac{1055}{16384} a^{2} + \frac{55}{4096} a + \frac{5}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59128196036.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.3.12313081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.1 | $x^{14} + 3 x^{12} - 2 x^{11} - 2 x^{10} + 4 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{4} - 2 x^{3} + 2 x^{2} + 4 x - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |