Normalized defining polynomial
\( x^{21} - 69 x^{19} - 46 x^{18} + 2043 x^{17} + 2724 x^{16} - 32707 x^{15} - 67230 x^{14} + 286632 x^{13} + 873912 x^{12} - 1070820 x^{11} - 6122808 x^{10} - 2253504 x^{9} + 19682496 x^{8} + 31706229 x^{7} - 3678686 x^{6} - 63451836 x^{5} - 86436504 x^{4} - 60419856 x^{3} - 24391584 x^{2} - 5420352 x - 516224 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(733074759778749309047228720717711720448=2^{14}\cdot 3^{21}\cdot 37^{2}\cdot 59^{3}\cdot 109^{2}\cdot 10859^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 59, 109, 10859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{23}{64} a^{14} - \frac{13}{64} a^{12} - \frac{3}{32} a^{11} + \frac{9}{64} a^{10} - \frac{3}{16} a^{9} + \frac{3}{8} a^{8} + \frac{3}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{19}{512} a^{15} + \frac{73}{256} a^{14} - \frac{77}{512} a^{13} - \frac{59}{128} a^{12} - \frac{43}{512} a^{11} - \frac{15}{256} a^{10} + \frac{7}{32} a^{9} + \frac{29}{64} a^{8} + \frac{3}{128} a^{7} + \frac{29}{64} a^{6} + \frac{3}{16} a^{5} - \frac{1}{2} a^{4} - \frac{75}{512} a^{3} - \frac{47}{256} a^{2} - \frac{33}{128} a + \frac{27}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{19}{4096} a^{16} + \frac{27}{1024} a^{15} - \frac{1393}{4096} a^{14} + \frac{471}{2048} a^{13} + \frac{1965}{4096} a^{12} - \frac{249}{512} a^{11} + \frac{43}{1024} a^{10} + \frac{65}{512} a^{9} - \frac{241}{1024} a^{8} + \frac{109}{256} a^{7} - \frac{23}{256} a^{6} - \frac{31}{64} a^{5} + \frac{1973}{4096} a^{4} - \frac{57}{512} a^{3} + \frac{71}{512} a^{2} + \frac{15}{128} a + \frac{101}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{23}{32768} a^{17} + \frac{35}{16384} a^{16} - \frac{1609}{32768} a^{15} - \frac{535}{2048} a^{14} - \frac{12207}{32768} a^{13} - \frac{7057}{16384} a^{12} - \frac{4081}{8192} a^{11} + \frac{267}{2048} a^{10} + \frac{1547}{8192} a^{9} - \frac{1077}{4096} a^{8} - \frac{497}{2048} a^{7} - \frac{423}{1024} a^{6} - \frac{14539}{32768} a^{5} + \frac{5991}{16384} a^{4} + \frac{1721}{4096} a^{3} + \frac{215}{2048} a^{2} - \frac{215}{2048} a - \frac{357}{1024}$, $\frac{1}{4456448} a^{20} + \frac{25}{2228224} a^{19} + \frac{15}{262144} a^{18} + \frac{125}{139264} a^{17} - \frac{22085}{4456448} a^{16} + \frac{43285}{2228224} a^{15} + \frac{833777}{4456448} a^{14} - \frac{287459}{1114112} a^{13} + \frac{14941}{278528} a^{12} + \frac{156843}{557056} a^{11} + \frac{395667}{1114112} a^{10} + \frac{56621}{139264} a^{9} + \frac{705}{34816} a^{8} - \frac{32953}{69632} a^{7} - \frac{177163}{4456448} a^{6} - \frac{157441}{1114112} a^{5} + \frac{2959}{65536} a^{4} + \frac{42349}{139264} a^{3} + \frac{61539}{278528} a^{2} - \frac{3017}{69632} a + \frac{7625}{69632}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 293150961077 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 22044960 |
| The 261 conjugacy class representatives for t21n144 are not computed |
| Character table for t21n144 is not computed |
Intermediate fields
| 7.3.640681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | $15{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| $59$ | 59.5.0.1 | $x^{5} - x + 9$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 59.5.0.1 | $x^{5} - x + 9$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 59.5.0.1 | $x^{5} - x + 9$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 59.6.3.1 | $x^{6} - 118 x^{4} + 3481 x^{2} - 59354531$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $109$ | 109.3.2.3 | $x^{3} - 3924$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.9.0.1 | $x^{9} - 2 x + 24$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 10859 | Data not computed | ||||||