Normalized defining polynomial
\( x^{21} + 18 x^{19} - 12 x^{18} + 27 x^{17} - 36 x^{16} - 825 x^{15} + 1674 x^{14} - 3708 x^{13} + 7160 x^{12} - 837 x^{11} - 17178 x^{10} + 37423 x^{9} - 61740 x^{8} + 61404 x^{7} + 16048 x^{6} - 130896 x^{5} + 172800 x^{4} - 120000 x^{3} + 48384 x^{2} - 10752 x + 1024 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6914758096011501798816014936459048393631645696=2^{14}\cdot 3^{22}\cdot 7^{13}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{3}{8} a^{11} - \frac{1}{2} a^{10} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{8} a^{13} - \frac{21}{64} a^{12} - \frac{13}{32} a^{11} + \frac{19}{64} a^{10} + \frac{1}{16} a^{9} - \frac{7}{16} a^{8} - \frac{21}{64} a^{6} - \frac{1}{4} a^{5} + \frac{7}{64} a^{4} - \frac{5}{32} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{512} a^{17} - \frac{11}{256} a^{15} + \frac{13}{128} a^{14} - \frac{69}{512} a^{13} + \frac{15}{128} a^{12} + \frac{111}{512} a^{11} - \frac{43}{256} a^{10} + \frac{15}{128} a^{9} + \frac{13}{64} a^{8} + \frac{171}{512} a^{7} - \frac{61}{256} a^{6} + \frac{183}{512} a^{5} + \frac{9}{128} a^{4} + \frac{53}{128} a^{3} - \frac{1}{32} a^{2} + \frac{7}{16} a - \frac{3}{8}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{11}{2048} a^{16} - \frac{31}{512} a^{15} + \frac{291}{4096} a^{14} - \frac{295}{2048} a^{13} - \frac{1305}{4096} a^{12} - \frac{143}{512} a^{11} - \frac{119}{256} a^{10} - \frac{33}{128} a^{9} - \frac{901}{4096} a^{8} - \frac{457}{1024} a^{7} - \frac{1085}{4096} a^{6} - \frac{183}{2048} a^{5} - \frac{121}{1024} a^{4} - \frac{173}{512} a^{3} - \frac{9}{64} a^{2} - \frac{7}{16} a + \frac{5}{32}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{15}{16384} a^{17} - \frac{29}{8192} a^{16} + \frac{371}{32768} a^{15} - \frac{33}{1024} a^{14} + \frac{1915}{32768} a^{13} - \frac{881}{16384} a^{12} - \frac{135}{1024} a^{11} - \frac{5}{128} a^{10} - \frac{11205}{32768} a^{9} - \frac{3}{16384} a^{8} - \frac{16037}{32768} a^{7} + \frac{19}{256} a^{6} - \frac{953}{2048} a^{5} + \frac{111}{2048} a^{4} - \frac{717}{2048} a^{3} + \frac{117}{256} a^{2} - \frac{23}{256} a + \frac{1}{128}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} + \frac{11}{131072} a^{18} - \frac{7}{32768} a^{17} + \frac{139}{262144} a^{16} - \frac{157}{131072} a^{15} - \frac{197}{262144} a^{14} + \frac{517}{65536} a^{13} - \frac{1961}{65536} a^{12} + \frac{357}{4096} a^{11} - \frac{46533}{262144} a^{10} + \frac{4743}{16384} a^{9} - \frac{114353}{262144} a^{8} - \frac{47589}{131072} a^{7} - \frac{649}{16384} a^{6} + \frac{2301}{16384} a^{5} + \frac{3601}{16384} a^{4} + \frac{1799}{8192} a^{3} + \frac{211}{2048} a^{2} - \frac{11}{512} a + \frac{1}{512}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4377824393380000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.18 | $x^{12} + 80 x^{10} + 81 x^{8} - 160 x^{6} - 117 x^{4} + 80 x^{2} + 227$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 173 | Data not computed | ||||||