Normalized defining polynomial
\( x^{21} - 27 x^{19} - 38 x^{18} + 207 x^{17} + 696 x^{16} - 2407 x^{15} - 4266 x^{14} - 2724 x^{13} + 131902 x^{12} + 77391 x^{11} - 1608954 x^{10} + 8580441 x^{9} + 6141168 x^{8} - 51751881 x^{7} - 35307262 x^{6} + 20619540 x^{5} - 13559064 x^{4} - 1839680 x^{3} + 8089056 x^{2} - 5392704 x + 3595136 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67854082802563294891090125131292002166915072=2^{14}\cdot 3^{28}\cdot 71^{3}\cdot 8623^{3}\cdot 28087^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 8623, 28087$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{15} + \frac{1}{4} a^{14} + \frac{3}{8} a^{13} - \frac{3}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{5} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{16} + \frac{1}{8} a^{15} - \frac{5}{16} a^{14} - \frac{1}{2} a^{13} - \frac{3}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{3}{16} a^{6} + \frac{3}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} + \frac{1}{32} a^{17} + \frac{1}{16} a^{16} - \frac{5}{32} a^{15} - \frac{1}{4} a^{14} + \frac{13}{32} a^{13} + \frac{7}{16} a^{12} - \frac{1}{4} a^{11} + \frac{7}{16} a^{10} + \frac{15}{32} a^{9} + \frac{7}{16} a^{8} + \frac{13}{32} a^{7} - \frac{1}{2} a^{6} + \frac{3}{32} a^{5} + \frac{5}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{20} - \frac{79749752297028144236319773115796289985316625127909471239412527029216862235421584307}{7415878815285533366450252089566367618301302935028150220628082450685807588893079830352} a^{19} - \frac{844910430311002683084112123782485748280518759590024191693117598034638471442515865687}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{18} - \frac{842928524087189484079984905498719633470408678511595180678124559384679525618406722509}{14831757630571066732900504179132735236602605870056300441256164901371615177786159660704} a^{17} - \frac{3656429430593905012620614593995716952439567154686134877130396677032534614547708447765}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{16} - \frac{1748156585625143561543966633372200860008669834898005414666841470646326156802315840851}{7415878815285533366450252089566367618301302935028150220628082450685807588893079830352} a^{15} - \frac{8252953798956758441596142715416131187230852022959047184344829192207636678908484971259}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{14} + \frac{2401235142930256038515926622949664656803477259687596928933014557859319259937841753489}{14831757630571066732900504179132735236602605870056300441256164901371615177786159660704} a^{13} - \frac{591036201020628709728500883912128448564788934666849247191497640514267342419108980745}{3707939407642766683225126044783183809150651467514075110314041225342903794446539915176} a^{12} - \frac{2904279459029740824187754154512599738218783850168312822944363310688435959255678009193}{14831757630571066732900504179132735236602605870056300441256164901371615177786159660704} a^{11} - \frac{2638505858489812415375009398927650815512403645740974394763882975447998060017675064825}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{10} + \frac{3759807901764264216022964290824825176656479426988284802793508599505677594445937932485}{14831757630571066732900504179132735236602605870056300441256164901371615177786159660704} a^{9} - \frac{12160920354107846589901228494187721697412458808973615973462662764263171246815818960899}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{8} - \frac{2075347757820910226441038551026548052798822858871786291942197253849768813776175458971}{7415878815285533366450252089566367618301302935028150220628082450685807588893079830352} a^{7} - \frac{14147052120317616289326547140556837634872422673014610821172985403553478976410177820149}{29663515261142133465801008358265470473205211740112600882512329802743230355572319321408} a^{6} + \frac{6848850134630291472507467536248728402286050176006931675173559792704961840635007068299}{14831757630571066732900504179132735236602605870056300441256164901371615177786159660704} a^{5} - \frac{550927312337689442913778353473687588931536022257517293975474930840290117640384068733}{3707939407642766683225126044783183809150651467514075110314041225342903794446539915176} a^{4} + \frac{1459491968356555342097631911035119837857084412790999646317195378841510423123495887987}{3707939407642766683225126044783183809150651467514075110314041225342903794446539915176} a^{3} - \frac{139835074271440419917013969219615412938287136010101505059225149625908326784578992823}{463492425955345835403140755597897976143831433439259388789255153167862974305817489397} a^{2} - \frac{193681506860100563001420298006963013599672443331030909882552392634540823822604852415}{463492425955345835403140755597897976143831433439259388789255153167862974305817489397} a - \frac{34702775563505135586223164888461144535088603741428916275900876146669535010281383096}{463492425955345835403140755597897976143831433439259388789255153167862974305817489397}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 131861797646000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.20 | $x^{14} + 4 x^{13} - x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.9.12.20 | $x^{9} + 6 x^{6} + 54 x^{2} + 27$ | $3$ | $3$ | $12$ | $(C_3^2:C_3):C_2$ | $[2, 2, 2]^{6}$ |
| 3.12.16.31 | $x^{12} + 120 x^{11} - 90 x^{10} - 60 x^{9} + 117 x^{8} + 54 x^{7} - 18 x^{6} + 108 x^{5} - 81 x^{4} - 54 x^{3} + 81$ | $3$ | $4$ | $16$ | 12T173 | $[2, 2, 2, 2]^{8}$ | |
| 71 | Data not computed | ||||||
| 8623 | Data not computed | ||||||
| 28087 | Data not computed | ||||||