Normalized defining polynomial
\( x^{21} + 21 x^{19} - 14 x^{18} + 117 x^{17} - 156 x^{16} - 137 x^{15} + 378 x^{14} - 3249 x^{13} + 8048 x^{12} - 12123 x^{11} + 17322 x^{10} - 9475 x^{9} - 25668 x^{8} + 70035 x^{7} - 106646 x^{6} + 130140 x^{5} - 120888 x^{4} + 76432 x^{3} - 30240 x^{2} + 6720 x - 640 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(565904596290929456689492868578359835518566400=2^{33}\cdot 3^{21}\cdot 5^{2}\cdot 11\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} + \frac{1}{8} a^{11} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{15}{64} a^{14} + \frac{1}{4} a^{13} - \frac{3}{64} a^{12} + \frac{13}{32} a^{11} - \frac{21}{64} a^{10} - \frac{7}{16} a^{9} + \frac{31}{64} a^{8} - \frac{15}{32} a^{7} + \frac{25}{64} a^{6} + \frac{3}{8} a^{5} + \frac{21}{64} a^{4} + \frac{1}{32} a^{3} - \frac{9}{64} a^{2} - \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} - \frac{19}{512} a^{15} - \frac{103}{256} a^{14} + \frac{157}{512} a^{13} - \frac{11}{128} a^{12} + \frac{223}{512} a^{11} - \frac{3}{256} a^{10} - \frac{25}{512} a^{9} + \frac{7}{16} a^{8} - \frac{35}{512} a^{7} + \frac{37}{256} a^{6} + \frac{197}{512} a^{5} + \frac{27}{128} a^{4} - \frac{69}{512} a^{3} + \frac{85}{256} a^{2} + \frac{5}{128} a - \frac{25}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{19}{4096} a^{16} - \frac{61}{1024} a^{15} + \frac{257}{4096} a^{14} + \frac{391}{2048} a^{13} - \frac{889}{4096} a^{12} - \frac{137}{512} a^{11} + \frac{1499}{4096} a^{10} + \frac{87}{2048} a^{9} - \frac{611}{4096} a^{8} + \frac{1}{1024} a^{7} - \frac{679}{4096} a^{6} - \frac{261}{2048} a^{5} + \frac{147}{4096} a^{4} - \frac{15}{128} a^{3} + \frac{109}{512} a^{2} + \frac{43}{128} a + \frac{39}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{31}{32768} a^{17} - \frac{65}{16384} a^{16} + \frac{1721}{32768} a^{15} + \frac{1441}{4096} a^{14} - \frac{5581}{32768} a^{13} - \frac{4025}{16384} a^{12} + \frac{8075}{32768} a^{11} - \frac{1181}{8192} a^{10} - \frac{13943}{32768} a^{9} - \frac{6357}{16384} a^{8} + \frac{15681}{32768} a^{7} + \frac{239}{1024} a^{6} - \frac{13105}{32768} a^{5} + \frac{1367}{16384} a^{4} - \frac{43}{4096} a^{3} + \frac{783}{2048} a^{2} + \frac{35}{2048} a + \frac{395}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} + \frac{25}{262144} a^{18} - \frac{1}{4096} a^{17} + \frac{245}{262144} a^{16} - \frac{323}{131072} a^{15} + \frac{1155}{262144} a^{14} - \frac{483}{65536} a^{13} + \frac{615}{262144} a^{12} + \frac{3409}{131072} a^{11} - \frac{25759}{262144} a^{10} + \frac{8605}{32768} a^{9} + \frac{114989}{262144} a^{8} + \frac{3249}{131072} a^{7} + \frac{57039}{262144} a^{6} + \frac{10355}{65536} a^{5} + \frac{11825}{65536} a^{4} + \frac{729}{4096} a^{3} - \frac{1055}{16384} a^{2} + \frac{55}{4096} a - \frac{5}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1688546689910000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.97 | $x^{14} - 4 x^{13} + 4 x^{12} - 4 x^{11} + 6 x^{10} + 8 x^{9} + 8 x^{7} + 4 x^{6} + 6 x^{4} + 4 x^{2} + 4 x - 6$ | $14$ | $1$ | $27$ | 14T44 | $[16/7, 16/7, 16/7, 20/7, 20/7, 20/7, 3]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 73 | Data not computed | ||||||