Normalized defining polynomial
\( x^{21} - 93 x^{19} - 62 x^{18} + 3429 x^{17} + 4572 x^{16} - 63087 x^{15} - 129222 x^{14} + 591984 x^{13} + 1789208 x^{12} - 2391417 x^{11} - 13195518 x^{10} - 2202817 x^{9} + 52871724 x^{8} + 74895849 x^{7} - 42927774 x^{6} - 229894956 x^{5} - 296294616 x^{4} - 204697424 x^{3} - 82452384 x^{2} - 18322752 x - 1745024 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(563919408925931349714688765084892538562166784=2^{14}\cdot 3^{28}\cdot 13^{6}\cdot 109^{6}\cdot 13633^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 109, 13633$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} - \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} - \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} - \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} + \frac{1}{81} a^{9} - \frac{1}{27} a^{6} - \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} + \frac{1}{81} a^{10} - \frac{1}{27} a^{7} - \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{11} - \frac{1}{27} a^{8} - \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} - \frac{1}{216} a^{13} - \frac{5}{972} a^{12} + \frac{11}{648} a^{11} + \frac{13}{1944} a^{9} - \frac{1}{108} a^{8} - \frac{1}{18} a^{7} - \frac{10}{243} a^{6} + \frac{101}{648} a^{5} - \frac{5}{108} a^{4} + \frac{323}{1944} a^{3} - \frac{5}{81} a^{2} - \frac{17}{72} a + \frac{335}{972}$, $\frac{1}{15552} a^{16} + \frac{1}{7776} a^{15} + \frac{7}{1728} a^{14} - \frac{1}{243} a^{13} - \frac{35}{15552} a^{12} + \frac{11}{864} a^{11} + \frac{229}{15552} a^{10} - \frac{31}{3888} a^{9} + \frac{17}{1944} a^{7} + \frac{263}{15552} a^{6} - \frac{17}{108} a^{5} - \frac{1081}{15552} a^{4} - \frac{1003}{7776} a^{3} + \frac{13}{1728} a^{2} - \frac{413}{3888} a + \frac{869}{3888}$, $\frac{1}{124416} a^{17} - \frac{5}{124416} a^{15} - \frac{191}{62208} a^{14} - \frac{97}{41472} a^{13} + \frac{179}{31104} a^{12} + \frac{793}{124416} a^{11} + \frac{319}{20736} a^{10} - \frac{241}{15552} a^{9} - \frac{127}{15552} a^{8} - \frac{257}{13824} a^{7} + \frac{1361}{62208} a^{6} + \frac{18599}{124416} a^{5} + \frac{1037}{10368} a^{4} + \frac{18977}{124416} a^{3} - \frac{175}{62208} a^{2} + \frac{3317}{10368} a + \frac{1883}{15552}$, $\frac{1}{2985984} a^{18} + \frac{1}{497664} a^{17} - \frac{23}{995328} a^{16} - \frac{5}{27648} a^{15} + \frac{355}{995328} a^{14} + \frac{2815}{497664} a^{13} - \frac{5237}{995328} a^{12} + \frac{515}{62208} a^{11} - \frac{3497}{248832} a^{10} + \frac{5755}{373248} a^{9} + \frac{7949}{995328} a^{8} - \frac{9719}{248832} a^{7} - \frac{10277}{331776} a^{6} - \frac{28735}{497664} a^{5} - \frac{93181}{995328} a^{4} - \frac{7585}{124416} a^{3} + \frac{28651}{124416} a^{2} - \frac{191}{15552} a - \frac{23231}{186624}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{7}{2654208} a^{17} + \frac{25}{3981312} a^{16} + \frac{1835}{7962624} a^{15} - \frac{233}{82944} a^{14} + \frac{30431}{7962624} a^{13} + \frac{1355}{1327104} a^{12} - \frac{9947}{663552} a^{11} - \frac{10135}{1492992} a^{10} - \frac{327497}{23887872} a^{9} - \frac{12133}{1327104} a^{8} - \frac{11287}{7962624} a^{7} - \frac{34421}{995328} a^{6} - \frac{179995}{2654208} a^{5} - \frac{327443}{3981312} a^{4} + \frac{18367}{331776} a^{3} + \frac{5287}{165888} a^{2} - \frac{186215}{1492992} a - \frac{134453}{746496}$, $\frac{1}{191102976} a^{20} + \frac{1}{95551488} a^{19} - \frac{25}{191102976} a^{18} + \frac{1}{1327104} a^{17} - \frac{163}{21233664} a^{16} - \frac{4015}{31850496} a^{15} + \frac{8671}{63700992} a^{14} + \frac{72287}{15925248} a^{13} - \frac{35023}{7962624} a^{12} - \frac{422087}{23887872} a^{11} - \frac{838889}{191102976} a^{10} + \frac{32659}{11943936} a^{9} + \frac{172583}{21233664} a^{8} + \frac{166349}{10616832} a^{7} + \frac{1652863}{63700992} a^{6} + \frac{855133}{15925248} a^{5} - \frac{1174255}{15925248} a^{4} + \frac{94579}{995328} a^{3} - \frac{4105037}{11943936} a^{2} - \frac{882037}{2985984} a + \frac{1079633}{2985984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 305586851656000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.3.2007889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.19 | $x^{14} + 4 x^{13} + x^{12} + 4 x^{10} + 2 x^{9} - 2 x^{8} - 2 x^{7} + 4 x^{6} - 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.12.6.2 | $x^{12} + 28561 x^{4} - 742586 x^{2} + 9653618$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.0.1 | $x^{4} - x + 30$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109.6.3.1 | $x^{6} - 218 x^{4} + 11881 x^{2} - 129502900$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13633 | Data not computed | ||||||