Normalized defining polynomial
\( x^{21} - 2 x^{20} - 29 x^{19} + 68 x^{18} + 307 x^{17} - 748 x^{16} - 1496 x^{15} + 3371 x^{14} + 3691 x^{13} - 7180 x^{12} - 6204 x^{11} + 7336 x^{10} + 7843 x^{9} - 91 x^{8} - 4359 x^{7} - 3432 x^{6} + 52 x^{5} + 951 x^{4} + 433 x^{3} + 29 x^{2} - 27 x - 5 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5581771880796940582540826805350057=11^{13}\cdot 29^{6}\cdot 43^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 29, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{18} + \frac{1}{5} a^{17} - \frac{2}{5} a^{16} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{828777558723298263123004252826311835} a^{20} + \frac{37002332409941622691374358940774852}{828777558723298263123004252826311835} a^{19} + \frac{120481515526032534475110384346808462}{828777558723298263123004252826311835} a^{18} + \frac{112870120040491171253958351715269484}{828777558723298263123004252826311835} a^{17} - \frac{22913835466278127920075963231554529}{828777558723298263123004252826311835} a^{16} + \frac{51553178591336434479670868999479946}{165755511744659652624600850565262367} a^{15} - \frac{281723629563404435438742243248115192}{828777558723298263123004252826311835} a^{14} - \frac{255869813228766936655157913918635936}{828777558723298263123004252826311835} a^{13} + \frac{16094654288357387562173539224025866}{165755511744659652624600850565262367} a^{12} + \frac{115077417392902986137591514873886389}{828777558723298263123004252826311835} a^{11} - \frac{235246852965194260269771026244181907}{828777558723298263123004252826311835} a^{10} + \frac{411836985299636314446235707582437924}{828777558723298263123004252826311835} a^{9} - \frac{401414756945163547879446107450005123}{828777558723298263123004252826311835} a^{8} + \frac{179991203871278744762800179802996641}{828777558723298263123004252826311835} a^{7} - \frac{214997194741777086204963561065160553}{828777558723298263123004252826311835} a^{6} + \frac{218709838647102085875453123831461537}{828777558723298263123004252826311835} a^{5} - \frac{40342984400796213873145718427143200}{165755511744659652624600850565262367} a^{4} - \frac{16880188076635015612692880059405493}{828777558723298263123004252826311835} a^{3} - \frac{24918221206172988326740040243189354}{165755511744659652624600850565262367} a^{2} - \frac{409265086253615996880187485222251944}{828777558723298263123004252826311835} a + \frac{68026711325418207529911749348936293}{165755511744659652624600850565262367}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1630641508.19 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 27 conjugacy class representatives for t21n57 |
| Character table for t21n57 is not computed |
Intermediate fields
| 3.3.473.1, 7.3.12313081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | $21$ | R | $21$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.6.5.2 | $x^{6} + 33$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.9.6.1 | $x^{9} - 841 x^{3} + 73167$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 29.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $43$ | 43.7.0.1 | $x^{7} - 2 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 43.14.7.1 | $x^{14} - 318028 x^{8} + 25285452196 x^{2} - 22017307499667$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ |