Normalized defining polynomial
\( x^{21} + 39 x^{19} - 26 x^{18} + 495 x^{17} - 660 x^{16} + 1867 x^{15} - 3294 x^{14} - 7038 x^{13} + 24136 x^{12} - 80028 x^{11} + 195624 x^{10} - 267747 x^{9} + 242892 x^{8} - 83151 x^{7} - 355746 x^{6} + 901044 x^{5} - 1050408 x^{4} + 708912 x^{3} - 284256 x^{2} + 63168 x - 6016 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55785954285731108195627351228809230233573158551552=2^{41}\cdot 3^{22}\cdot 7^{12}\cdot 31^{9}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $233.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 31, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{8} a^{14} - \frac{3}{8} a^{13} + \frac{1}{4} a^{11} - \frac{3}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{11} - \frac{1}{2} a^{10} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{3}{64} a^{14} - \frac{1}{2} a^{13} + \frac{7}{64} a^{12} - \frac{9}{32} a^{11} - \frac{25}{64} a^{10} + \frac{5}{16} a^{9} - \frac{7}{32} a^{8} + \frac{5}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{4} a^{5} - \frac{3}{64} a^{4} + \frac{9}{32} a^{3} + \frac{5}{64} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{1}{512} a^{15} - \frac{13}{256} a^{14} - \frac{249}{512} a^{13} + \frac{15}{128} a^{12} + \frac{3}{512} a^{11} - \frac{79}{256} a^{10} - \frac{115}{256} a^{9} + \frac{31}{64} a^{8} + \frac{57}{128} a^{7} + \frac{9}{64} a^{6} - \frac{163}{512} a^{5} + \frac{3}{128} a^{4} + \frac{105}{512} a^{3} + \frac{127}{256} a^{2} - \frac{33}{128} a - \frac{27}{64}$, $\frac{1}{3837952} a^{18} + \frac{1}{2048} a^{17} - \frac{20545}{3837952} a^{16} - \frac{18283}{959488} a^{15} + \frac{691}{3837952} a^{14} + \frac{765693}{1918976} a^{13} - \frac{1912325}{3837952} a^{12} + \frac{139875}{479744} a^{11} - \frac{760641}{1918976} a^{10} + \frac{318323}{959488} a^{9} + \frac{196501}{959488} a^{8} - \frac{116235}{239872} a^{7} + \frac{1002349}{3837952} a^{6} + \frac{905195}{1918976} a^{5} - \frac{886783}{3837952} a^{4} - \frac{56253}{119936} a^{3} - \frac{91221}{479744} a^{2} + \frac{6831}{119936} a - \frac{58675}{239872}$, $\frac{1}{30703616} a^{19} - \frac{1}{7675904} a^{18} - \frac{1805}{30703616} a^{17} + \frac{65429}{15351808} a^{16} + \frac{1874875}{30703616} a^{15} + \frac{224107}{3837952} a^{14} + \frac{14821183}{30703616} a^{13} + \frac{4988515}{15351808} a^{12} - \frac{2991145}{15351808} a^{11} + \frac{215647}{3837952} a^{10} - \frac{3001389}{7675904} a^{9} + \frac{854051}{3837952} a^{8} - \frac{104051}{30703616} a^{7} + \frac{1618567}{3837952} a^{6} + \frac{8201693}{30703616} a^{5} - \frac{3804923}{15351808} a^{4} - \frac{1889733}{3837952} a^{3} - \frac{676243}{1918976} a^{2} + \frac{265225}{1918976} a - \frac{269631}{959488}$, $\frac{1}{245628928} a^{20} - \frac{1}{122814464} a^{19} - \frac{21}{245628928} a^{18} + \frac{7953}{15351808} a^{17} - \frac{138481}{245628928} a^{16} - \frac{3506585}{122814464} a^{15} - \frac{4342033}{245628928} a^{14} + \frac{29961169}{61407232} a^{13} + \frac{2390813}{122814464} a^{12} + \frac{3056661}{61407232} a^{11} + \frac{16033487}{61407232} a^{10} - \frac{6885765}{15351808} a^{9} - \frac{109262915}{245628928} a^{8} + \frac{52711337}{122814464} a^{7} + \frac{99391821}{245628928} a^{6} - \frac{17063823}{61407232} a^{5} + \frac{12034363}{61407232} a^{4} - \frac{631623}{1918976} a^{3} + \frac{1313827}{15351808} a^{2} - \frac{148283}{3837952} a + \frac{1329089}{3837952}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1003704997340000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 105 conjugacy class representatives for t21n133 are not computed |
| Character table for t21n133 is not computed |
Intermediate fields
| 7.7.36622433792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.30.281 | $x^{12} + 10 x^{10} - 7 x^{8} - 4 x^{6} + 3 x^{4} - 6 x^{2} + 11$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 47 | Data not computed | ||||||