Normalized defining polynomial
\( x^{21} - 2 x^{20} - 137 x^{19} + 76 x^{18} + 8256 x^{17} + 7881 x^{16} - 273863 x^{15} - 682412 x^{14} + 4908610 x^{13} + 21908430 x^{12} - 31430107 x^{11} - 341735080 x^{10} - 388554126 x^{9} + 2149192639 x^{8} + 7548917866 x^{7} + 4258627825 x^{6} - 26496463968 x^{5} - 78186606006 x^{4} - 106751692680 x^{3} - 83096492148 x^{2} - 35694736587 x - 6614508609 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5278016519968931762985266928325781867429536088064=2^{14}\cdot 3^{18}\cdot 73^{6}\cdot 277^{2}\cdot 54037^{2}\cdot 156601^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73, 277, 54037, 156601$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{17} + \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{6742759445906577314327546572170080791443697207539} a^{20} + \frac{438908627478904116611286657779531572593144641083}{6742759445906577314327546572170080791443697207539} a^{19} - \frac{206283552304335169102464079283523507737655395716}{2247586481968859104775848857390026930481232402513} a^{18} - \frac{651813080128239761149953454702963741467312769171}{2247586481968859104775848857390026930481232402513} a^{17} - \frac{2817461092246213551623870912052743987272064492761}{6742759445906577314327546572170080791443697207539} a^{16} - \frac{2011169306137268289987262092751939762747078030777}{6742759445906577314327546572170080791443697207539} a^{15} - \frac{3278431764422729694670513170269018313814012586873}{6742759445906577314327546572170080791443697207539} a^{14} - \frac{1648504152713260785950273332870509672802205721149}{6742759445906577314327546572170080791443697207539} a^{13} - \frac{305683141171531477743187246992032112625792877569}{2247586481968859104775848857390026930481232402513} a^{12} - \frac{2152582114442514100708489627506042461099426081023}{6742759445906577314327546572170080791443697207539} a^{11} - \frac{1660962024869934993846262261128411718189341375263}{6742759445906577314327546572170080791443697207539} a^{10} + \frac{67888147204323186741092819391905130161779539728}{6742759445906577314327546572170080791443697207539} a^{9} + \frac{1528758004504662206180691597026675647353853169638}{6742759445906577314327546572170080791443697207539} a^{8} - \frac{3113072773489732581828732899275786452623571846838}{6742759445906577314327546572170080791443697207539} a^{7} - \frac{971458305734808851957986930661737254276424790078}{6742759445906577314327546572170080791443697207539} a^{6} + \frac{953450448034664927435780909141628934462935302576}{2247586481968859104775848857390026930481232402513} a^{5} - \frac{3236503103799032386426958304477905401164681702316}{6742759445906577314327546572170080791443697207539} a^{4} + \frac{1896504803159298166824511876730115365021557215725}{6742759445906577314327546572170080791443697207539} a^{3} + \frac{324042012775420626208928533375525557452407123878}{2247586481968859104775848857390026930481232402513} a^{2} + \frac{1057927454826782028120783934654349589256783420358}{2247586481968859104775848857390026930481232402513} a - \frac{888965982747482097416346632711280807002131128291}{2247586481968859104775848857390026930481232402513}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15752772125000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.3.3884841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $21$ | $21$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.19 | $x^{14} + 4 x^{13} + x^{12} + 4 x^{10} + 2 x^{9} - 2 x^{8} - 2 x^{7} + 4 x^{6} - 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.12.12.9 | $x^{12} + 24 x^{11} + 21 x^{10} + 21 x^{9} + 63 x^{8} - 54 x^{7} + 81 x^{5} - 54 x^{4} - 27 x^{3} - 81 x^{2} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T41 | $[3/2, 3/2]_{2}^{4}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 73.9.0.1 | $x^{9} - 5 x + 26$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 277 | Data not computed | ||||||
| 54037 | Data not computed | ||||||
| 156601 | Data not computed | ||||||