Normalized defining polynomial
\( x^{21} - 12 x^{19} - 12 x^{18} + 63 x^{17} + 63 x^{16} - 167 x^{15} - 18 x^{14} + 249 x^{13} + 133 x^{12} - 180 x^{11} - 1605 x^{10} - 24 x^{9} + 2187 x^{8} + 498 x^{7} + 232 x^{6} - 1215 x^{5} - 1710 x^{4} + 929 x^{3} + 765 x^{2} - 321 x - 173 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5249831164096086007511385454857=3^{28}\cdot 71^{3}\cdot 8623^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71, 8623$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{1097644771664751142127045598514077} a^{20} - \frac{32248147923572782007921078401678}{365881590554917047375681866171359} a^{19} - \frac{20770612727356190541499071178909}{1097644771664751142127045598514077} a^{18} + \frac{75710945742150026684722017239404}{1097644771664751142127045598514077} a^{17} + \frac{21614103727250750679927177760478}{1097644771664751142127045598514077} a^{16} - \frac{106461058768776604565353858974377}{1097644771664751142127045598514077} a^{15} + \frac{31805166794250557301151718452898}{365881590554917047375681866171359} a^{14} - \frac{298172020418285757698473177111228}{1097644771664751142127045598514077} a^{13} - \frac{209744238378716028894442629733570}{1097644771664751142127045598514077} a^{12} - \frac{376461019125172182500629360792657}{1097644771664751142127045598514077} a^{11} + \frac{54039221628663327291165426648197}{365881590554917047375681866171359} a^{10} - \frac{488544404688424592298225276935840}{1097644771664751142127045598514077} a^{9} - \frac{29116216365835312571515990304278}{1097644771664751142127045598514077} a^{8} - \frac{468205041826259129404174226681504}{1097644771664751142127045598514077} a^{7} - \frac{218361015386554019168137713523810}{1097644771664751142127045598514077} a^{6} - \frac{185275953623717294008681819212922}{1097644771664751142127045598514077} a^{5} - \frac{91751326015151968531356421422089}{1097644771664751142127045598514077} a^{4} - \frac{204369473977621600025350755708229}{1097644771664751142127045598514077} a^{3} + \frac{55343059518693751564653723809696}{365881590554917047375681866171359} a^{2} + \frac{133865132499139190983275138359509}{1097644771664751142127045598514077} a + \frac{194285101347478144851889591584811}{1097644771664751142127045598514077}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32106686.5651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3674160 |
| The 143 conjugacy class representatives for t21n130 are not computed |
| Character table for t21n130 is not computed |
Intermediate fields
| 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | $18{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.7 | $x^{9} + 18 x^{5} + 72 x^{3} + 54$ | $3$ | $3$ | $12$ | $C_3 \wr C_3 $ | $[2, 2, 2]^{3}$ |
| 3.12.16.15 | $x^{12} + 111 x^{11} - 36 x^{10} + 315 x^{9} - 324 x^{8} + 351 x^{7} - 180 x^{6} - 54 x^{5} + 162 x^{4} - 54 x^{3} + 243 x^{2} - 162$ | $3$ | $4$ | $16$ | 12T131 | $[2, 2, 2, 2]^{4}$ | |
| 71 | Data not computed | ||||||
| 8623 | Data not computed | ||||||