Normalized defining polynomial
\( x^{21} - 3 x^{20} + 15 x^{19} - 42 x^{18} + 18 x^{17} - 279 x^{16} - 292 x^{15} - 894 x^{14} + 1677 x^{13} + 5757 x^{12} + 30555 x^{11} + 59316 x^{10} + 103482 x^{9} + 110757 x^{8} - 119745 x^{7} - 505489 x^{6} - 1236021 x^{5} - 1853052 x^{4} - 1402417 x^{3} - 526482 x^{2} - 91392 x - 5491 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(51760737730687241530618054097890443264=2^{18}\cdot 3^{30}\cdot 17^{2}\cdot 57605311^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 57605311$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} - \frac{1}{17} a^{17} - \frac{5}{17} a^{16} + \frac{6}{17} a^{14} + \frac{5}{17} a^{13} + \frac{1}{17} a^{12} + \frac{4}{17} a^{11} + \frac{1}{17} a^{10} - \frac{8}{17} a^{9} + \frac{6}{17} a^{8} + \frac{6}{17} a^{7} - \frac{8}{17} a^{6} - \frac{3}{17} a^{5} + \frac{5}{17} a^{4} + \frac{2}{17} a^{3} - \frac{3}{17} a^{2} + \frac{8}{17} a$, $\frac{1}{17} a^{19} - \frac{6}{17} a^{17} - \frac{5}{17} a^{16} + \frac{6}{17} a^{15} - \frac{6}{17} a^{14} + \frac{6}{17} a^{13} + \frac{5}{17} a^{12} + \frac{5}{17} a^{11} - \frac{7}{17} a^{10} - \frac{2}{17} a^{9} - \frac{5}{17} a^{8} - \frac{2}{17} a^{7} + \frac{6}{17} a^{6} + \frac{2}{17} a^{5} + \frac{7}{17} a^{4} - \frac{1}{17} a^{3} + \frac{5}{17} a^{2} + \frac{8}{17} a$, $\frac{1}{128015364719278042580962850430471982990255802872301239} a^{20} - \frac{1231628894957908216088912834513204580691899806221916}{128015364719278042580962850430471982990255802872301239} a^{19} + \frac{1144967954217953440637774386902226132359539193247764}{128015364719278042580962850430471982990255802872301239} a^{18} + \frac{2479972279071142207656860403391319603155756118882530}{7530315571722237798880167672380704881779753110135367} a^{17} - \frac{60421570652922655131412995601733706386427104444978706}{128015364719278042580962850430471982990255802872301239} a^{16} + \frac{40915655928289689059799830701606491648279903422081113}{128015364719278042580962850430471982990255802872301239} a^{15} - \frac{9502260369434377912401366234208776257501850259913992}{128015364719278042580962850430471982990255802872301239} a^{14} - \frac{23549225249891677367934598533422774139857477197586766}{128015364719278042580962850430471982990255802872301239} a^{13} - \frac{62703702946920667865734781801750899962886844059347178}{128015364719278042580962850430471982990255802872301239} a^{12} + \frac{36012584311443346514819369144056379353749844745688951}{128015364719278042580962850430471982990255802872301239} a^{11} - \frac{24873102612339987956853145136511682338215287720023269}{128015364719278042580962850430471982990255802872301239} a^{10} - \frac{16627010667210104531933654152249622089126176489144318}{128015364719278042580962850430471982990255802872301239} a^{9} + \frac{25755249335315685835247892527600714975522965901774075}{128015364719278042580962850430471982990255802872301239} a^{8} - \frac{20286604808752613227886654876109648040051897276249140}{128015364719278042580962850430471982990255802872301239} a^{7} - \frac{53961791278845167726303495075884424251890099053451399}{128015364719278042580962850430471982990255802872301239} a^{6} + \frac{62941020931662448268299911590705270327882838290671020}{128015364719278042580962850430471982990255802872301239} a^{5} + \frac{56918016946502305720457379383485761261755457580816191}{128015364719278042580962850430471982990255802872301239} a^{4} - \frac{25194058101625835699832507696217721878194277946762192}{128015364719278042580962850430471982990255802872301239} a^{3} - \frac{3672838268773892753251435806292819178715377532817264}{7530315571722237798880167672380704881779753110135367} a^{2} + \frac{3742642386913372908666028011443434314290753136090015}{7530315571722237798880167672380704881779753110135367} a - \frac{3161575374707191062436067400312503179558560542729743}{7530315571722237798880167672380704881779753110135367}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 223805105406 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14224896 |
| The 88 conjugacy class representatives for t21n143 are not computed |
| Character table for t21n143 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $21$ | $21$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.12.12.2 | $x^{12} - 6 x^{10} - 13 x^{8} - 28 x^{6} + 15 x^{4} - 30 x^{2} - 3$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.12.18.74 | $x^{12} - 6 x^{11} - 3 x^{10} - 12 x^{9} + 9 x^{8} + 9 x^{7} + 12 x^{6} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | $C_{12}$ | $[2]_{2}^{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 57605311 | Data not computed | ||||||