Normalized defining polynomial
\( x^{21} - 18 x^{19} - 24 x^{18} + 90 x^{17} + 252 x^{16} - 256 x^{15} - 1368 x^{14} - 102 x^{13} + 4096 x^{12} + 2556 x^{11} - 6780 x^{10} - 3112 x^{9} + 12384 x^{8} + 6666 x^{7} - 11436 x^{6} - 8712 x^{5} + 6192 x^{4} + 4576 x^{3} - 2880 x^{2} - 384 x + 256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45589180307529253293163107814735872=2^{32}\cdot 3^{21}\cdot 317^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 317$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{14} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{15} - \frac{3}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{3}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{18} - \frac{1}{32} a^{17} - \frac{1}{32} a^{16} - \frac{1}{16} a^{15} - \frac{3}{32} a^{14} + \frac{1}{8} a^{13} + \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{11}{32} a^{10} + \frac{3}{16} a^{9} + \frac{7}{16} a^{8} - \frac{5}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{5}{32} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{128} a^{19} + \frac{1}{64} a^{17} - \frac{1}{16} a^{16} + \frac{1}{64} a^{15} - \frac{1}{32} a^{14} + \frac{5}{16} a^{13} - \frac{1}{16} a^{12} - \frac{3}{64} a^{11} - \frac{1}{4} a^{10} + \frac{1}{32} a^{9} + \frac{9}{32} a^{8} + \frac{5}{16} a^{7} - \frac{1}{8} a^{6} - \frac{11}{64} a^{5} + \frac{5}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{812898947876306805465794456018876672} a^{20} - \frac{3598579637949653810456688748531}{12701546060567293835403038375294948} a^{19} + \frac{658372161785893445292886147409061}{406449473938153402732897228009438336} a^{18} - \frac{531667678029967634884503323679569}{101612368484538350683224307002359584} a^{17} + \frac{14400404426695371410284822715709577}{406449473938153402732897228009438336} a^{16} + \frac{19421639752508546674923753189715967}{203224736969076701366448614004719168} a^{15} - \frac{15863534142749309541135001775158793}{101612368484538350683224307002359584} a^{14} - \frac{40483136758223533474904389181868037}{101612368484538350683224307002359584} a^{13} - \frac{94969836198076702368649091982566051}{406449473938153402732897228009438336} a^{12} - \frac{6309781385542719418066503212584843}{25403092121134587670806076750589896} a^{11} - \frac{85146381677024986698985498699691883}{203224736969076701366448614004719168} a^{10} + \frac{54512483946348735300385196976725161}{203224736969076701366448614004719168} a^{9} + \frac{12785788700467707173876085872635913}{101612368484538350683224307002359584} a^{8} + \frac{15149207860245750081342125935871169}{50806184242269175341612153501179792} a^{7} - \frac{71438623329972954105184336222667563}{406449473938153402732897228009438336} a^{6} - \frac{47228324060041414644167976920992731}{203224736969076701366448614004719168} a^{5} + \frac{2105996581584644485448284625063921}{50806184242269175341612153501179792} a^{4} + \frac{1193693555149931654634853416537940}{3175386515141823458850759593823737} a^{3} + \frac{10401360081912911143494607659491945}{25403092121134587670806076750589896} a^{2} + \frac{3962697197571190918028876571244287}{12701546060567293835403038375294948} a + \frac{981995385149431965881304255924004}{3175386515141823458850759593823737}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12412580355.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.3.6431296.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.117 | $x^{14} + 2 x^{13} + 4 x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} - 2 x^{2} + 2$ | $14$ | $1$ | $26$ | 14T44 | $[2, 18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| 317 | Data not computed | ||||||