Properties

Label 21.9.43077770085...8321.1
Degree $21$
Signature $[9, 6]$
Discriminant $3^{44}\cdot 181^{2}\cdot 36541^{2}$
Root discriminant $44.59$
Ramified primes $3, 181, 36541$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 21T153

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 6, -12, -7, 72, -108, -30, 297, -333, -69, 513, -432, -57, 360, -243, -9, 108, -63, 4, 12, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^20 + 12*x^19 + 4*x^18 - 63*x^17 + 108*x^16 - 9*x^15 - 243*x^14 + 360*x^13 - 57*x^12 - 432*x^11 + 513*x^10 - 69*x^9 - 333*x^8 + 297*x^7 - 30*x^6 - 108*x^5 + 72*x^4 - 7*x^3 - 12*x^2 + 6*x - 1)
 
gp: K = bnfinit(x^21 - 6*x^20 + 12*x^19 + 4*x^18 - 63*x^17 + 108*x^16 - 9*x^15 - 243*x^14 + 360*x^13 - 57*x^12 - 432*x^11 + 513*x^10 - 69*x^9 - 333*x^8 + 297*x^7 - 30*x^6 - 108*x^5 + 72*x^4 - 7*x^3 - 12*x^2 + 6*x - 1, 1)
 

Normalized defining polynomial

\( x^{21} - 6 x^{20} + 12 x^{19} + 4 x^{18} - 63 x^{17} + 108 x^{16} - 9 x^{15} - 243 x^{14} + 360 x^{13} - 57 x^{12} - 432 x^{11} + 513 x^{10} - 69 x^{9} - 333 x^{8} + 297 x^{7} - 30 x^{6} - 108 x^{5} + 72 x^{4} - 7 x^{3} - 12 x^{2} + 6 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[9, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(43077770085674387148520635740838321=3^{44}\cdot 181^{2}\cdot 36541^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 181, 36541$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3}$, $\frac{1}{3} a^{19} - \frac{1}{3} a$, $\frac{1}{9} a^{20} - \frac{1}{9} a^{19} + \frac{1}{9} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a - \frac{1}{9}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10314709459.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

21T153:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 48009024000
The 267 conjugacy class representatives for t21n153 are not computed
Character table for t21n153 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ R $21$ $21$ ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ $21$ ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ $21$ $21$ $15{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ $15{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ $21$ ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.3.4.2$x^{3} - 3 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
3.9.21.10$x^{9} + 15 x^{6} + 18 x^{4} + 3$$9$$1$$21$$(C_3^2:C_3):C_2$$[3/2, 2, 5/2, 17/6]_{2}$
3.9.19.7$x^{9} + 6 x^{6} + 9 x^{2} + 3$$9$$1$$19$$C_3^2 : S_3 $$[3/2, 2, 5/2]_{2}$
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.3.0.1$x^{3} - x + 18$$1$$3$$0$$C_3$$[\ ]^{3}$
181.3.2.3$x^{3} - 724$$3$$1$$2$$C_3$$[\ ]_{3}$
181.4.0.1$x^{4} - x + 54$$1$$4$$0$$C_4$$[\ ]^{4}$
36541Data not computed