Normalized defining polynomial
\( x^{21} - 12 x^{19} - 6 x^{18} + 3 x^{17} - 129 x^{16} - 144 x^{15} + 111 x^{14} - 273 x^{13} - 611 x^{12} + 93 x^{11} + 426 x^{10} + 1596 x^{9} + 1509 x^{8} - 1977 x^{7} - 1134 x^{6} + 1617 x^{5} + 435 x^{4} - 254 x^{3} - 39 x^{2} + 18 x + 3 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(426526997774818621923125282529=3^{34}\cdot 13^{2}\cdot 73^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{9}$, $\frac{1}{183} a^{19} + \frac{13}{183} a^{18} + \frac{20}{183} a^{17} - \frac{2}{183} a^{16} - \frac{6}{61} a^{15} - \frac{28}{183} a^{14} + \frac{2}{61} a^{13} - \frac{1}{183} a^{12} + \frac{17}{61} a^{11} - \frac{55}{183} a^{10} + \frac{77}{183} a^{9} - \frac{5}{183} a^{8} + \frac{71}{183} a^{7} + \frac{2}{61} a^{6} + \frac{25}{183} a^{5} - \frac{15}{61} a^{4} - \frac{14}{183} a^{3} - \frac{16}{61} a^{2} + \frac{1}{61} a - \frac{4}{61}$, $\frac{1}{3978306103839878067499581} a^{20} - \frac{1064874528946321826082}{1326102034613292689166527} a^{19} - \frac{153679874417470392154411}{3978306103839878067499581} a^{18} + \frac{8799382445395289428316}{65218132849834066680321} a^{17} - \frac{149108684842746869667175}{1326102034613292689166527} a^{16} - \frac{657776553661912568140583}{3978306103839878067499581} a^{15} + \frac{160098315175642952099015}{1326102034613292689166527} a^{14} - \frac{659025103256058832907750}{3978306103839878067499581} a^{13} - \frac{492956549051454554169547}{3978306103839878067499581} a^{12} + \frac{331565982183173295656339}{3978306103839878067499581} a^{11} - \frac{406696274917436331894186}{1326102034613292689166527} a^{10} - \frac{1536189519419783333542730}{3978306103839878067499581} a^{9} + \frac{1584006161540281701668569}{3978306103839878067499581} a^{8} - \frac{641233384872861794107479}{1326102034613292689166527} a^{7} - \frac{1943770221289034918613988}{3978306103839878067499581} a^{6} + \frac{286431383912752016555778}{1326102034613292689166527} a^{5} + \frac{1076995583127477379180181}{3978306103839878067499581} a^{4} + \frac{583787993615108790192121}{3978306103839878067499581} a^{3} + \frac{359165061590654249718763}{1326102034613292689166527} a^{2} + \frac{154183181780852479193179}{1326102034613292689166527} a - \frac{300925103819883309652368}{1326102034613292689166527}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13046035.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5511240 |
| The 246 conjugacy class representatives for t21n132 are not computed |
| Character table for t21n132 is not computed |
Intermediate fields
| 7.3.3884841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $21$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | $21$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $15{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $73$ | 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 73.9.0.1 | $x^{9} - 5 x + 26$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |