Normalized defining polynomial
\( x^{21} - 8 x^{20} - 103 x^{19} + 746 x^{18} + 4832 x^{17} - 26062 x^{16} - 141694 x^{15} + 408022 x^{14} + 2611992 x^{13} - 1563121 x^{12} - 26772274 x^{11} - 33304253 x^{10} + 100887793 x^{9} + 374558971 x^{8} + 379783904 x^{7} - 477643726 x^{6} - 2363188741 x^{5} - 4691718180 x^{4} - 6210392913 x^{3} - 5943695836 x^{2} - 3952581284 x - 1568656069 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(365733978997947732510665000581452096461458495283189161=17^{4}\cdot 29^{18}\cdot 354439^{2}\cdot 406969^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $355.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 29, 354439, 406969$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} - \frac{4}{17} a^{14} + \frac{1}{17} a^{13} + \frac{4}{17} a^{12} + \frac{1}{17} a^{11} - \frac{1}{17} a^{10} - \frac{8}{17} a^{9} - \frac{2}{17} a^{8} + \frac{8}{17} a^{7} + \frac{7}{17} a^{6} + \frac{4}{17} a^{5} - \frac{7}{17} a^{4} + \frac{5}{17} a^{2} - \frac{2}{17} a + \frac{3}{17}$, $\frac{1}{17} a^{16} + \frac{2}{17} a^{14} + \frac{8}{17} a^{13} + \frac{3}{17} a^{11} + \frac{5}{17} a^{10} + \frac{5}{17} a^{7} - \frac{2}{17} a^{6} - \frac{8}{17} a^{5} + \frac{6}{17} a^{4} + \frac{5}{17} a^{3} + \frac{1}{17} a^{2} - \frac{5}{17} a - \frac{5}{17}$, $\frac{1}{17} a^{17} - \frac{1}{17} a^{14} - \frac{2}{17} a^{13} - \frac{5}{17} a^{12} + \frac{3}{17} a^{11} + \frac{2}{17} a^{10} - \frac{1}{17} a^{9} - \frac{8}{17} a^{8} - \frac{1}{17} a^{7} - \frac{5}{17} a^{6} - \frac{2}{17} a^{5} + \frac{2}{17} a^{4} + \frac{1}{17} a^{3} + \frac{2}{17} a^{2} - \frac{1}{17} a - \frac{6}{17}$, $\frac{1}{17} a^{18} - \frac{6}{17} a^{14} - \frac{4}{17} a^{13} + \frac{7}{17} a^{12} + \frac{3}{17} a^{11} - \frac{2}{17} a^{10} + \frac{1}{17} a^{9} - \frac{3}{17} a^{8} + \frac{3}{17} a^{7} + \frac{5}{17} a^{6} + \frac{6}{17} a^{5} - \frac{6}{17} a^{4} + \frac{2}{17} a^{3} + \frac{4}{17} a^{2} - \frac{8}{17} a + \frac{3}{17}$, $\frac{1}{17} a^{19} + \frac{6}{17} a^{14} - \frac{4}{17} a^{13} - \frac{7}{17} a^{12} + \frac{4}{17} a^{11} - \frac{5}{17} a^{10} + \frac{8}{17} a^{8} + \frac{2}{17} a^{7} - \frac{3}{17} a^{6} + \frac{1}{17} a^{5} - \frac{6}{17} a^{4} + \frac{4}{17} a^{3} + \frac{5}{17} a^{2} + \frac{8}{17} a + \frac{1}{17}$, $\frac{1}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{20} + \frac{110851779928896926631928097385777063068607586624539355073008222968761515832297927}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{19} - \frac{66271239534218261499335580179643829822261420420359433304837650013085052799824263}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{18} + \frac{9108904315617717409416988209931676557018500725160180986867136418697717295746142}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{17} + \frac{95812108686624708244898941474746860772698564609840958110646979338002897664214042}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{16} - \frac{24748306408627252857126611539579411269480432609019201469638549262196597867088317}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{15} - \frac{2108775508279655251561997568355125038936979808130512729566689105386568331796858156}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{14} - \frac{1744878870586901933247820953174675532957569451789369976796004276751315308821009347}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{13} - \frac{2016465064301105319596956628631908172593127222438378384530842910265111431202980314}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{12} + \frac{375209776187031451778822567266124957947271430294456501277653455274875157690941877}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{11} + \frac{1012589233974285561063294092013183965397145811648490425939385562931968940958958124}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{10} - \frac{1687954291140003743249921751889377883611666710340642549264459469953783694496943111}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{9} - \frac{1344520265946385893084133848433923014267509479119405726807633867104444879122729367}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{8} - \frac{39711950345642988079188288696347210998316606071503348849314684753327314486997132}{249054790765888407828487361866667701335877260631693796589954063178582903217565943} a^{7} + \frac{1890123655123264336149693870864345430967082892479727222162702465605932201053071530}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{6} - \frac{33185227224491837140466095931853077842136227317657373118984297348235929429595575}{103266620561465925197177686627642705431949108066799866878761440830144130602405391} a^{5} - \frac{54279317464037772037789903247454029123055455578030817724214659936135912156089698}{249054790765888407828487361866667701335877260631693796589954063178582903217565943} a^{4} + \frac{1946253445428881140839204728766711335768496760877292788608455287411384067228158852}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{3} - \frac{991180613049736455881980486132723450223254139659313830919793273440233995050628630}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031} a^{2} + \frac{24254783795820477944572928380105564333501002061474556700501874156314349923353777}{249054790765888407828487361866667701335877260631693796589954063178582903217565943} a - \frac{709079059324496287327397504352237566013023133273483967227892576261790334973985940}{4233931443020102933084285151733350922709913430738794542029219074035909354698621031}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4901910072490000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 979776 |
| The 177 conjugacy class representatives for t21n120 are not computed |
| Character table for t21n120 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29 | Data not computed | ||||||
| 354439 | Data not computed | ||||||
| 406969 | Data not computed | ||||||