Normalized defining polynomial
\( x^{21} - x^{20} + 4 x^{19} + x^{18} - 17 x^{17} + 24 x^{16} - 107 x^{15} - 238 x^{14} - 467 x^{13} - 355 x^{12} + 497 x^{11} + 812 x^{10} + 3209 x^{9} - 222 x^{8} - 3450 x^{7} + 1169 x^{6} - 373 x^{5} + 2 x^{4} + 32 x^{3} - 12 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356929309835813972908052362379264=2^{14}\cdot 37^{7}\cdot 71^{3}\cdot 8623^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 71, 8623$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{9} a^{19} - \frac{2}{9} a^{18} - \frac{1}{9} a^{17} - \frac{2}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{2}{9} a^{13} - \frac{4}{9} a^{12} - \frac{1}{3} a^{10} - \frac{4}{9} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{1992006560099708548505644563876357} a^{20} + \frac{36795005979022636380601902926158}{664002186699902849501881521292119} a^{19} + \frac{191852467864916242129543806142057}{1992006560099708548505644563876357} a^{18} - \frac{860786360804246308337286064919401}{1992006560099708548505644563876357} a^{17} - \frac{32381383542873320033327135349584}{221334062233300949833960507097373} a^{16} - \frac{48978801207936153052995811209217}{664002186699902849501881521292119} a^{15} - \frac{870629557328146618662961744991867}{1992006560099708548505644563876357} a^{14} + \frac{180963335535311939535828004416392}{664002186699902849501881521292119} a^{13} + \frac{483897496504319816777805291463753}{1992006560099708548505644563876357} a^{12} - \frac{200278206330248542274544524360575}{664002186699902849501881521292119} a^{11} + \frac{297688207738007610510248548795148}{1992006560099708548505644563876357} a^{10} - \frac{877001025650085857877102055241138}{1992006560099708548505644563876357} a^{9} - \frac{238743649829775499488292117315903}{664002186699902849501881521292119} a^{8} + \frac{16008509284196140629986819145854}{221334062233300949833960507097373} a^{7} + \frac{200757626232604869177253936084436}{664002186699902849501881521292119} a^{6} + \frac{873096901109844173344930361262989}{1992006560099708548505644563876357} a^{5} - \frac{377446935376860321546334070662682}{1992006560099708548505644563876357} a^{4} + \frac{147335933364285509196237600862297}{664002186699902849501881521292119} a^{3} - \frac{562784950220901179597959225399462}{1992006560099708548505644563876357} a^{2} + \frac{136433653468925589650365962861413}{1992006560099708548505644563876357} a - \frac{417277244068105035028531498372177}{1992006560099708548505644563876357}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 257019918.368 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30240 |
| The 45 conjugacy class representatives for t21n74 |
| Character table for t21n74 is not computed |
Intermediate fields
| 3.3.148.1, 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | R | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | $15{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 71 | Data not computed | ||||||
| 8623 | Data not computed | ||||||