Normalized defining polynomial
\( x^{21} - 6 x^{20} + 13 x^{19} - 25 x^{18} + 29 x^{17} + 34 x^{16} + 10 x^{15} + 77 x^{14} - 179 x^{13} - 279 x^{12} - 692 x^{11} - 1196 x^{10} - 1314 x^{9} - 2334 x^{8} - 3096 x^{7} - 3644 x^{6} - 4884 x^{5} - 4772 x^{4} - 3472 x^{3} - 2304 x^{2} - 1080 x - 216 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3467468392769548076725889974344351744=2^{26}\cdot 3^{9}\cdot 47^{7}\cdot 2276293^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47, 2276293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{52} a^{17} - \frac{5}{52} a^{16} - \frac{1}{4} a^{15} - \frac{3}{13} a^{14} + \frac{2}{13} a^{13} - \frac{1}{4} a^{12} - \frac{4}{13} a^{11} - \frac{1}{4} a^{10} + \frac{3}{26} a^{9} - \frac{5}{26} a^{8} - \frac{19}{52} a^{7} + \frac{4}{13} a^{6} + \frac{1}{26} a^{5} - \frac{1}{26} a^{3} - \frac{6}{13} a^{2} + \frac{5}{13} a - \frac{2}{13}$, $\frac{1}{52} a^{18} + \frac{1}{52} a^{16} + \frac{1}{52} a^{15} - \frac{1}{4} a^{14} - \frac{3}{13} a^{13} + \frac{5}{26} a^{12} - \frac{15}{52} a^{11} + \frac{19}{52} a^{10} + \frac{7}{52} a^{9} + \frac{11}{26} a^{8} + \frac{3}{13} a^{7} - \frac{11}{26} a^{6} + \frac{5}{26} a^{5} + \frac{6}{13} a^{4} - \frac{2}{13} a^{3} + \frac{1}{13} a^{2} - \frac{3}{13} a + \frac{3}{13}$, $\frac{1}{12168} a^{19} - \frac{5}{676} a^{18} - \frac{5}{12168} a^{17} + \frac{1007}{12168} a^{16} - \frac{1039}{12168} a^{15} + \frac{53}{1521} a^{14} - \frac{649}{6084} a^{13} - \frac{4165}{12168} a^{12} - \frac{1733}{12168} a^{11} - \frac{55}{312} a^{10} + \frac{185}{6084} a^{9} + \frac{704}{1521} a^{8} + \frac{1}{3} a^{7} - \frac{451}{1014} a^{6} - \frac{133}{338} a^{5} - \frac{388}{1521} a^{4} - \frac{33}{338} a^{3} - \frac{239}{3042} a^{2} + \frac{271}{1521} a + \frac{113}{507}$, $\frac{1}{109512} a^{20} - \frac{1}{36504} a^{19} - \frac{1049}{109512} a^{18} + \frac{10}{1053} a^{17} - \frac{791}{13689} a^{16} + \frac{26329}{109512} a^{15} + \frac{3691}{27378} a^{14} - \frac{475}{8424} a^{13} + \frac{11119}{27378} a^{12} - \frac{97}{18252} a^{11} + \frac{21781}{109512} a^{10} + \frac{6823}{27378} a^{9} + \frac{1514}{4563} a^{8} + \frac{2045}{9126} a^{7} - \frac{239}{507} a^{6} + \frac{1772}{13689} a^{5} + \frac{3137}{9126} a^{4} - \frac{1}{81} a^{3} - \frac{7147}{27378} a^{2} + \frac{1420}{4563} a + \frac{469}{1521}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153154579102 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28449792 |
| The 98 conjugacy class representatives for t21n146 are not computed |
| Character table for t21n146 is not computed |
Intermediate fields
| 3.3.564.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.20.57 | $x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{6} + 2$ | $12$ | $1$ | $20$ | 12T206 | $[4/3, 4/3, 4/3, 4/3, 2, 2]_{3}^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 47 | Data not computed | ||||||
| 2276293 | Data not computed | ||||||