Normalized defining polynomial
\( x^{21} - x^{20} - 27 x^{19} + 39 x^{18} + 380 x^{17} - 662 x^{16} - 3120 x^{15} + 3546 x^{14} + 9982 x^{13} + 3246 x^{12} - 10664 x^{11} - 20884 x^{10} - 15180 x^{9} - 7396 x^{8} - 7696 x^{7} - 3296 x^{6} + 1440 x^{5} + 520 x^{4} + 136 x^{3} + 656 x^{2} + 312 x + 24 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3467468392769548076725889974344351744=2^{26}\cdot 3^{9}\cdot 47^{7}\cdot 2276293^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47, 2276293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{12} a^{15} - \frac{1}{4} a^{14} + \frac{1}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{16} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{4} a^{12} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{17} - \frac{1}{6} a^{14} - \frac{1}{12} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{18} - \frac{1}{12} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{19} + \frac{1}{12} a^{14} - \frac{1}{4} a^{13} + \frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{185278392758777933560750272540734964} a^{20} + \frac{1500609960993541401878398277318007}{61759464252925977853583424180244988} a^{19} - \frac{1307057042592706161768722376379051}{46319598189694483390187568135183741} a^{18} - \frac{934357133621375832866639043653043}{61759464252925977853583424180244988} a^{17} + \frac{1587762281069745168605153701161329}{46319598189694483390187568135183741} a^{16} + \frac{1655873714212243131807808546587299}{46319598189694483390187568135183741} a^{15} + \frac{9521191438298941226197073441242333}{61759464252925977853583424180244988} a^{14} - \frac{1698341234675763502016144835644891}{15439866063231494463395856045061247} a^{13} - \frac{22125320887088266858511801400738371}{92639196379388966780375136270367482} a^{12} + \frac{9850892994319881477847229824257883}{46319598189694483390187568135183741} a^{11} - \frac{838297054748313183909865871132095}{46319598189694483390187568135183741} a^{10} - \frac{881477085466505434968946309562553}{30879732126462988926791712090122494} a^{9} - \frac{6689391061825202783025972399967199}{92639196379388966780375136270367482} a^{8} + \frac{19491550418474327291852892524211031}{92639196379388966780375136270367482} a^{7} - \frac{3921340961716211136251922408444035}{15439866063231494463395856045061247} a^{6} - \frac{3716257877287964236365996909076521}{15439866063231494463395856045061247} a^{5} - \frac{4038270864700604723150963087381483}{46319598189694483390187568135183741} a^{4} - \frac{4149049974000644187520995018389656}{15439866063231494463395856045061247} a^{3} - \frac{8836725099812378725399373616326101}{46319598189694483390187568135183741} a^{2} + \frac{1173780402915650953839043888788932}{15439866063231494463395856045061247} a + \frac{5681672553308286421080271201506100}{15439866063231494463395856045061247}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153154579102 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 28449792 |
| The 98 conjugacy class representatives for t21n146 are not computed |
| Character table for t21n146 is not computed |
Intermediate fields
| 3.3.564.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 47 | Data not computed | ||||||
| 2276293 | Data not computed | ||||||