Normalized defining polynomial
\( x^{21} + 15 x^{19} - 10 x^{18} + 18 x^{17} - 24 x^{16} - 532 x^{15} + 1080 x^{14} - 2502 x^{13} + 4912 x^{12} - 2322 x^{11} - 5988 x^{10} + 23570 x^{9} - 59688 x^{8} + 100815 x^{7} - 129110 x^{6} + 140940 x^{5} - 123768 x^{4} + 76752 x^{3} - 30240 x^{2} + 6720 x - 640 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30373064714949128377863619266623984025600=2^{14}\cdot 3^{21}\cdot 5^{2}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{21}{64} a^{14} - \frac{1}{2} a^{13} - \frac{11}{32} a^{12} - \frac{7}{16} a^{11} - \frac{7}{16} a^{10} + \frac{1}{4} a^{9} + \frac{13}{32} a^{8} - \frac{1}{16} a^{7} - \frac{13}{32} a^{6} + \frac{1}{4} a^{5} - \frac{15}{32} a^{4} - \frac{3}{16} a^{3} - \frac{9}{64} a^{2} - \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} - \frac{25}{512} a^{15} - \frac{101}{256} a^{14} - \frac{107}{256} a^{13} + \frac{7}{64} a^{12} - \frac{53}{128} a^{11} + \frac{3}{64} a^{10} - \frac{99}{256} a^{9} + \frac{15}{32} a^{8} + \frac{15}{256} a^{7} + \frac{7}{128} a^{6} + \frac{33}{256} a^{5} + \frac{31}{64} a^{4} + \frac{31}{512} a^{3} + \frac{85}{256} a^{2} + \frac{5}{128} a - \frac{25}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{25}{4096} a^{16} - \frac{63}{1024} a^{15} + \frac{203}{2048} a^{14} - \frac{477}{1024} a^{13} - \frac{25}{1024} a^{12} + \frac{103}{256} a^{11} - \frac{587}{2048} a^{10} + \frac{473}{1024} a^{9} + \frac{255}{2048} a^{8} + \frac{139}{512} a^{7} - \frac{451}{2048} a^{6} + \frac{95}{1024} a^{5} + \frac{1039}{4096} a^{4} - \frac{99}{512} a^{3} + \frac{109}{512} a^{2} + \frac{43}{128} a + \frac{39}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{27}{32768} a^{17} - \frac{51}{16384} a^{16} + \frac{159}{16384} a^{15} - \frac{111}{4096} a^{14} + \frac{437}{8192} a^{13} - \frac{295}{4096} a^{12} - \frac{27}{16384} a^{11} + \frac{1821}{4096} a^{10} + \frac{2579}{16384} a^{9} + \frac{3353}{8192} a^{8} + \frac{7413}{16384} a^{7} - \frac{275}{1024} a^{6} + \frac{11175}{32768} a^{5} - \frac{3769}{16384} a^{4} - \frac{585}{4096} a^{3} - \frac{585}{2048} a^{2} + \frac{115}{2048} a - \frac{5}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} + \frac{19}{262144} a^{18} - \frac{3}{16384} a^{17} + \frac{57}{131072} a^{16} - \frac{63}{65536} a^{15} - \frac{7}{65536} a^{14} + \frac{71}{16384} a^{13} - \frac{2387}{131072} a^{12} + \frac{3615}{65536} a^{11} - \frac{15621}{131072} a^{10} + \frac{3531}{16384} a^{9} - \frac{44711}{131072} a^{8} + \frac{29789}{65536} a^{7} + \frac{124647}{262144} a^{6} - \frac{29065}{65536} a^{5} + \frac{27829}{65536} a^{4} - \frac{2633}{8192} a^{3} - \frac{1055}{16384} a^{2} + \frac{55}{4096} a - \frac{5}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2804156970700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.24 | $x^{14} - 3 x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 577 | Data not computed | ||||||