Normalized defining polynomial
\( x^{21} - 63 x^{19} - 4 x^{18} + 1683 x^{17} + 216 x^{16} - 24877 x^{15} - 5346 x^{14} + 221076 x^{13} + 76086 x^{12} - 1185372 x^{11} - 647136 x^{10} + 3493272 x^{9} + 3080592 x^{8} - 3545727 x^{7} - 6328004 x^{6} - 4869576 x^{5} - 126336 x^{4} + 2790672 x^{3} + 1272384 x^{2} - 282752 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29357028753446882924668961925905914281=3^{28}\cdot 47^{4}\cdot 59^{3}\cdot 10859^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 47, 59, 10859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{752} a^{18} - \frac{63}{752} a^{16} - \frac{1}{188} a^{15} + \frac{179}{752} a^{14} - \frac{10}{47} a^{13} - \frac{61}{752} a^{12} - \frac{41}{376} a^{11} - \frac{3}{188} a^{10} + \frac{67}{376} a^{9} + \frac{39}{188} a^{8} - \frac{5}{94} a^{7} + \frac{29}{94} a^{6} + \frac{3}{94} a^{5} - \frac{1}{16} a^{4} + \frac{19}{188} a^{3}$, $\frac{1}{1504} a^{19} - \frac{63}{1504} a^{17} - \frac{1}{376} a^{16} + \frac{179}{1504} a^{15} + \frac{27}{188} a^{14} - \frac{61}{1504} a^{13} - \frac{41}{752} a^{12} - \frac{3}{376} a^{11} + \frac{67}{752} a^{10} - \frac{55}{376} a^{9} + \frac{21}{94} a^{8} - \frac{65}{188} a^{7} + \frac{25}{94} a^{6} - \frac{1}{32} a^{5} + \frac{19}{376} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{733832919157084990564025855711504649092875364868032} a^{20} - \frac{118544276714845019763647684522951337477273975427}{366916459578542495282012927855752324546437682434016} a^{19} + \frac{437008058307403103236730264820404196208132463325}{733832919157084990564025855711504649092875364868032} a^{18} - \frac{2007648324908725598065042030493334509848957094385}{366916459578542495282012927855752324546437682434016} a^{17} + \frac{45281028635973808446685577419188934354909572693879}{733832919157084990564025855711504649092875364868032} a^{16} - \frac{8870873429868593035133125248927748927996907511425}{366916459578542495282012927855752324546437682434016} a^{15} + \frac{139510437876399985579288004685695116981069799374631}{733832919157084990564025855711504649092875364868032} a^{14} + \frac{27705552235454203773133568651587410282229689932049}{183458229789271247641006463927876162273218841217008} a^{13} - \frac{42075432104519425029448601685135755692180569496255}{183458229789271247641006463927876162273218841217008} a^{12} + \frac{82183833260469073540549597273377759088544865388271}{366916459578542495282012927855752324546437682434016} a^{11} - \frac{2135889891292479755201143516641633369868468199739}{45864557447317811910251615981969040568304710304252} a^{10} - \frac{11314667331504358877161183911772854119141981103289}{45864557447317811910251615981969040568304710304252} a^{9} - \frac{22078346292081840682723261495397713404509688767449}{91729114894635623820503231963938081136609420608504} a^{8} + \frac{2231201488171788348839258644430771857484334421347}{11466139361829452977562903995492260142076177576063} a^{7} - \frac{218395979904228989730333004128040034703473710598815}{733832919157084990564025855711504649092875364868032} a^{6} - \frac{29785104910225583592150762906501451270109658900149}{366916459578542495282012927855752324546437682434016} a^{5} - \frac{43803679789754297271601315657817176532938472001461}{183458229789271247641006463927876162273218841217008} a^{4} - \frac{33542634849031604503117529794818678822545069132243}{91729114894635623820503231963938081136609420608504} a^{3} - \frac{121208898825495501135572468455130899518497644248}{243960411953818148458785191393452343448429310129} a^{2} + \frac{59756433533497939323842749949761610609109166419}{243960411953818148458785191393452343448429310129} a - \frac{104214721856271269915324927816860873452677100160}{243960411953818148458785191393452343448429310129}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64859089096.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3674160 |
| The 143 conjugacy class representatives for t21n130 are not computed |
| Character table for t21n130 is not computed |
Intermediate fields
| 7.3.640681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $15{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | $15{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | $15{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.6.4.2 | $x^{6} - 47 x^{3} + 28717$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 47.12.0.1 | $x^{12} + x^{2} - x + 41$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 59 | Data not computed | ||||||
| 10859 | Data not computed | ||||||