Normalized defining polynomial
\( x^{21} + 105 x^{19} - 70 x^{18} + 4257 x^{17} - 5676 x^{16} + 83405 x^{15} - 163026 x^{14} + 789975 x^{13} - 1840928 x^{12} + 2652939 x^{11} - 3594666 x^{10} - 8784901 x^{9} + 48065508 x^{8} - 80541009 x^{7} + 61367970 x^{6} - 10638324 x^{5} - 19795032 x^{4} + 18743248 x^{3} - 7941024 x^{2} + 1764672 x - 168064 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(262279532795191301858328944366856470224404480000000=2^{21}\cdot 3^{21}\cdot 5^{7}\cdot 13^{2}\cdot 101^{2}\cdot 6679^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $251.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 101, 6679$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{16} a - \frac{3}{8}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{7}{16} a^{2} - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{3}{32} a^{4} + \frac{3}{32} a^{2} + \frac{1}{8}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} - \frac{1}{8} a^{4} + \frac{3}{32} a^{3} + \frac{1}{8} a^{2} - \frac{1}{16} a + \frac{1}{8}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{10} - \frac{1}{16} a^{8} + \frac{3}{64} a^{6} - \frac{1}{4} a^{4} - \frac{5}{64} a^{2} + \frac{5}{16}$, $\frac{1}{64} a^{15} + \frac{1}{64} a^{11} + \frac{3}{64} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{5}{64} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{256} a^{16} - \frac{1}{128} a^{15} + \frac{1}{256} a^{14} + \frac{1}{256} a^{12} - \frac{3}{128} a^{11} + \frac{5}{256} a^{10} + \frac{1}{64} a^{9} - \frac{9}{256} a^{8} - \frac{7}{128} a^{7} + \frac{3}{256} a^{6} - \frac{1}{32} a^{5} - \frac{37}{256} a^{4} - \frac{21}{128} a^{3} - \frac{73}{256} a^{2} + \frac{17}{64} a - \frac{5}{64}$, $\frac{1}{4096} a^{17} - \frac{1}{512} a^{16} + \frac{17}{4096} a^{15} + \frac{9}{2048} a^{14} - \frac{23}{4096} a^{13} + \frac{15}{1024} a^{12} - \frac{59}{4096} a^{11} + \frac{51}{2048} a^{10} + \frac{31}{4096} a^{9} + \frac{31}{512} a^{8} + \frac{211}{4096} a^{7} - \frac{129}{2048} a^{6} - \frac{45}{4096} a^{5} + \frac{167}{1024} a^{4} - \frac{233}{4096} a^{3} - \frac{923}{2048} a^{2} - \frac{263}{1024} a - \frac{65}{512}$, $\frac{1}{65536} a^{18} - \frac{3}{32768} a^{17} - \frac{127}{65536} a^{16} - \frac{67}{16384} a^{15} + \frac{13}{65536} a^{14} - \frac{505}{32768} a^{13} + \frac{61}{65536} a^{12} - \frac{117}{4096} a^{11} + \frac{1387}{65536} a^{10} + \frac{539}{32768} a^{9} - \frac{4029}{65536} a^{8} - \frac{839}{16384} a^{7} + \frac{5839}{65536} a^{6} - \frac{2527}{32768} a^{5} + \frac{4431}{65536} a^{4} + \frac{679}{8192} a^{3} + \frac{3071}{8192} a^{2} - \frac{45}{1024} a - \frac{225}{4096}$, $\frac{1}{1048576} a^{19} - \frac{1}{262144} a^{18} + \frac{117}{1048576} a^{17} - \frac{261}{524288} a^{16} + \frac{5877}{1048576} a^{15} + \frac{709}{131072} a^{14} + \frac{4441}{1048576} a^{13} - \frac{3435}{524288} a^{12} - \frac{19509}{1048576} a^{11} + \frac{323}{262144} a^{10} - \frac{26705}{1048576} a^{9} + \frac{22965}{524288} a^{8} - \frac{14441}{1048576} a^{7} - \frac{2049}{32768} a^{6} - \frac{37677}{1048576} a^{5} - \frac{9749}{524288} a^{4} + \frac{21805}{131072} a^{3} - \frac{24597}{65536} a^{2} + \frac{26103}{65536} a - \frac{9505}{32768}$, $\frac{1}{16777216} a^{20} - \frac{1}{8388608} a^{19} + \frac{109}{16777216} a^{18} - \frac{9}{524288} a^{17} + \frac{4833}{16777216} a^{16} - \frac{7671}{8388608} a^{15} + \frac{114089}{16777216} a^{14} + \frac{33271}{4194304} a^{13} - \frac{481}{16777216} a^{12} - \frac{133551}{8388608} a^{11} - \frac{482873}{16777216} a^{10} + \frac{64601}{2097152} a^{9} - \frac{381333}{16777216} a^{8} - \frac{227449}{8388608} a^{7} + \frac{1109139}{16777216} a^{6} + \frac{238431}{4194304} a^{5} + \frac{402501}{4194304} a^{4} - \frac{3677}{131072} a^{3} - \frac{440883}{1048576} a^{2} + \frac{30827}{262144} a + \frac{129759}{262144}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 344236195330000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.1115226025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | $15{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.21.2 | $x^{14} + 4 x^{13} + 4 x^{12} + 4 x^{11} - 3 x^{10} + 2 x^{7} + x^{6} - 2 x^{5} + 4 x^{4} + 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 3]^{7}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 101 | Data not computed | ||||||
| 6679 | Data not computed | ||||||