Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 45 x^{17} + 6 x^{16} + 57 x^{15} - 18 x^{14} + 384 x^{13} - 82 x^{12} - 369 x^{11} - 114 x^{10} - 235 x^{9} + 1422 x^{8} + 3867 x^{7} + 1160 x^{6} - 3312 x^{5} - 1512 x^{4} + 112 x^{3} + 288 x^{2} + 384 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2279162600361785110437461456142336=2^{14}\cdot 3^{21}\cdot 23^{3}\cdot 239^{3}\cdot 431^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 239, 431$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{3}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{16} - \frac{1}{8} a^{15} + \frac{7}{16} a^{14} - \frac{1}{8} a^{13} + \frac{5}{16} a^{12} + \frac{3}{8} a^{11} + \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{1}{16} a^{8} + \frac{3}{8} a^{7} + \frac{1}{16} a^{6} + \frac{3}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} + \frac{1}{32} a^{17} - \frac{1}{16} a^{16} + \frac{7}{32} a^{15} - \frac{1}{16} a^{14} + \frac{5}{32} a^{13} + \frac{3}{16} a^{12} + \frac{1}{8} a^{11} + \frac{3}{16} a^{10} + \frac{15}{32} a^{9} + \frac{3}{16} a^{8} - \frac{15}{32} a^{7} + \frac{3}{16} a^{6} + \frac{15}{32} a^{5} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{108525200706175154410528492758198976} a^{20} + \frac{101531959462877232163226775381021}{6782825044135947150658030797387436} a^{19} - \frac{758715039618173387997996781651979}{108525200706175154410528492758198976} a^{18} - \frac{1342746645017242944125176129549421}{54262600353087577205264246379099488} a^{17} + \frac{2174534005044383637674112421263931}{108525200706175154410528492758198976} a^{16} - \frac{3104546127098568061091242595845329}{54262600353087577205264246379099488} a^{15} - \frac{25724312575877604105307952426432191}{108525200706175154410528492758198976} a^{14} + \frac{23443287514192151574621543357315915}{54262600353087577205264246379099488} a^{13} + \frac{1834902464722827801545830460046799}{13565650088271894301316061594774872} a^{12} + \frac{25862269204650136105614887538946539}{54262600353087577205264246379099488} a^{11} - \frac{8845346874668824366216751475637393}{108525200706175154410528492758198976} a^{10} + \frac{24150954977822671578424234984776071}{54262600353087577205264246379099488} a^{9} - \frac{5324492492149034973063618356788723}{108525200706175154410528492758198976} a^{8} + \frac{9973734952624681678776108882267419}{54262600353087577205264246379099488} a^{7} - \frac{40028548183536141412843726165802637}{108525200706175154410528492758198976} a^{6} - \frac{793501620114773663337429056697059}{1695706261033986787664507699346859} a^{5} - \frac{2447555455912183961294245398076585}{13565650088271894301316061594774872} a^{4} - \frac{260411200009447287416626713025843}{3391412522067973575329015398693718} a^{3} - \frac{385275595733818504524444856713317}{1695706261033986787664507699346859} a^{2} + \frac{827380957680000663931908147304656}{1695706261033986787664507699346859} a - \frac{189987968881503467372614488051512}{1695706261033986787664507699346859}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 673571318.196 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.5.2369207.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }$ | $15{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | $18{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.28 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{8} + 2 x^{5} + 2 x^{4} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.9.0.1 | $x^{9} - 5 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 239 | Data not computed | ||||||
| 431 | Data not computed | ||||||