Normalized defining polynomial
\( x^{21} + 18 x^{19} - 12 x^{18} + 27 x^{17} - 36 x^{16} - 879 x^{15} + 1782 x^{14} - 5157 x^{13} + 10848 x^{12} - 11070 x^{11} + 6324 x^{10} + 8720 x^{9} - 45216 x^{8} + 75093 x^{7} - 58850 x^{6} + 14148 x^{5} + 13464 x^{4} - 14096 x^{3} + 6048 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2128052128770141235151849578843227099906048=2^{14}\cdot 3^{21}\cdot 29^{18}\cdot 59\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{3}{8} a^{11} - \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{9}{32} a^{14} + \frac{3}{8} a^{13} + \frac{11}{64} a^{12} - \frac{13}{32} a^{11} - \frac{19}{64} a^{10} - \frac{1}{16} a^{9} + \frac{11}{64} a^{8} + \frac{13}{32} a^{7} + \frac{3}{32} a^{6} + \frac{1}{8} a^{5} - \frac{11}{64} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{11}{256} a^{15} - \frac{51}{128} a^{14} + \frac{187}{512} a^{13} + \frac{15}{128} a^{12} + \frac{57}{512} a^{11} - \frac{117}{256} a^{10} + \frac{3}{512} a^{9} - \frac{9}{32} a^{8} - \frac{67}{256} a^{7} - \frac{59}{128} a^{6} + \frac{9}{32} a^{5} - \frac{1}{8} a^{4} + \frac{181}{512} a^{3} - \frac{17}{256} a^{2} - \frac{1}{128} a + \frac{5}{64}$, $\frac{1}{69632} a^{18} + \frac{1}{2048} a^{17} - \frac{107}{34816} a^{16} + \frac{185}{8704} a^{15} + \frac{21795}{69632} a^{14} + \frac{5513}{34816} a^{13} + \frac{23025}{69632} a^{12} + \frac{965}{8704} a^{11} - \frac{13009}{69632} a^{10} + \frac{1387}{34816} a^{9} - \frac{9971}{34816} a^{8} + \frac{169}{512} a^{7} + \frac{1687}{8704} a^{6} + \frac{727}{2176} a^{5} - \frac{28619}{69632} a^{4} - \frac{3843}{8704} a^{3} - \frac{1225}{8704} a^{2} + \frac{1045}{2176} a - \frac{219}{4352}$, $\frac{1}{557056} a^{19} - \frac{1}{139264} a^{18} - \frac{209}{278528} a^{17} + \frac{227}{139264} a^{16} + \frac{28659}{557056} a^{15} + \frac{711}{17408} a^{14} - \frac{262139}{557056} a^{13} - \frac{65871}{278528} a^{12} - \frac{226945}{557056} a^{11} + \frac{32343}{139264} a^{10} - \frac{113269}{278528} a^{9} - \frac{41989}{139264} a^{8} - \frac{6031}{69632} a^{7} + \frac{6665}{34816} a^{6} - \frac{198923}{557056} a^{5} + \frac{75781}{278528} a^{4} + \frac{30161}{69632} a^{3} - \frac{5779}{34816} a^{2} - \frac{16807}{34816} a + \frac{4433}{17408}$, $\frac{1}{4456448} a^{20} - \frac{1}{2228224} a^{19} + \frac{11}{2228224} a^{18} - \frac{263}{557056} a^{17} + \frac{4235}{4456448} a^{16} - \frac{63645}{2228224} a^{15} + \frac{1261317}{4456448} a^{14} + \frac{535611}{1114112} a^{13} - \frac{480765}{4456448} a^{12} + \frac{444205}{2228224} a^{11} + \frac{427015}{2228224} a^{10} + \frac{175635}{557056} a^{9} - \frac{2921}{8192} a^{8} + \frac{33773}{139264} a^{7} - \frac{1668587}{4456448} a^{6} + \frac{106877}{1114112} a^{5} + \frac{412375}{1114112} a^{4} + \frac{57775}{139264} a^{3} + \frac{34515}{278528} a^{2} + \frac{7029}{69632} a - \frac{9215}{69632}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15793264178900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.31 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |
| 59 | Data not computed | ||||||