Normalized defining polynomial
\( x^{21} - 27 x^{17} - 36 x^{16} - 39 x^{15} - 54 x^{14} + 45 x^{13} + 208 x^{12} + 945 x^{11} + 2526 x^{10} + 3985 x^{9} + 5076 x^{8} + 3393 x^{7} - 5790 x^{6} - 18252 x^{5} - 22104 x^{4} - 15056 x^{3} - 6048 x^{2} - 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2103209751169770458112224890011648=2^{14}\cdot 3^{21}\cdot 107^{3}\cdot 21557^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107, 21557$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{3}{8} a^{11} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{7}{16} a^{14} - \frac{1}{8} a^{13} + \frac{5}{64} a^{12} - \frac{13}{32} a^{11} + \frac{29}{64} a^{10} - \frac{7}{16} a^{9} - \frac{3}{64} a^{8} - \frac{3}{32} a^{7} + \frac{13}{64} a^{6} + \frac{3}{8} a^{5} + \frac{9}{64} a^{4} - \frac{5}{32} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{3}{64} a^{15} - \frac{1}{8} a^{14} + \frac{85}{512} a^{13} - \frac{9}{128} a^{12} + \frac{81}{512} a^{11} - \frac{107}{256} a^{10} + \frac{181}{512} a^{9} - \frac{1}{8} a^{8} - \frac{167}{512} a^{7} + \frac{63}{256} a^{6} - \frac{39}{512} a^{5} - \frac{39}{128} a^{4} + \frac{201}{512} a^{3} + \frac{17}{256} a^{2} - \frac{49}{128} a - \frac{21}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{3}{512} a^{16} - \frac{7}{256} a^{15} + \frac{725}{4096} a^{14} - \frac{103}{2048} a^{13} + \frac{1177}{4096} a^{12} + \frac{81}{512} a^{11} - \frac{1439}{4096} a^{10} + \frac{43}{2048} a^{9} + \frac{1497}{4096} a^{8} - \frac{269}{1024} a^{7} + \frac{1245}{4096} a^{6} - \frac{807}{2048} a^{5} + \frac{1}{4096} a^{4} + \frac{105}{256} a^{3} + \frac{95}{512} a^{2} + \frac{55}{128} a + \frac{85}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{7}{8192} a^{17} - \frac{5}{1024} a^{16} + \frac{949}{32768} a^{15} - \frac{719}{4096} a^{14} + \frac{1589}{32768} a^{13} - \frac{4949}{16384} a^{12} - \frac{6831}{32768} a^{11} + \frac{1765}{8192} a^{10} - \frac{10963}{32768} a^{9} + \frac{13}{16384} a^{8} + \frac{3397}{32768} a^{7} - \frac{1025}{4096} a^{6} + \frac{11421}{32768} a^{5} + \frac{6983}{16384} a^{4} - \frac{325}{4096} a^{3} - \frac{497}{2048} a^{2} - \frac{903}{2048} a - \frac{341}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{65536} a^{18} + \frac{1}{32768} a^{17} - \frac{11}{262144} a^{16} - \frac{29}{131072} a^{15} - \frac{155}{262144} a^{14} - \frac{91}{65536} a^{13} - \frac{683}{262144} a^{12} - \frac{579}{131072} a^{11} - \frac{1371}{262144} a^{10} - \frac{27}{32768} a^{9} + \frac{3553}{262144} a^{8} + \frac{6091}{131072} a^{7} + \frac{27757}{262144} a^{6} + \frac{12431}{65536} a^{5} + \frac{20299}{65536} a^{4} - \frac{119}{256} a^{3} + \frac{211}{16384} a^{2} + \frac{11}{4096} a + \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 572421980.598 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.5.2306599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.17 | $x^{14} + x^{12} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{5} + 2 x^{4} + 2 x^{3} + 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| $3$ | 3.9.9.7 | $x^{9} + 18 x^{3} + 54 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.12.12.22 | $x^{12} + 18 x^{11} + 21 x^{10} - 69 x^{9} - 81 x^{8} + 72 x^{7} - 90 x^{6} - 108 x^{5} + 54 x^{4} - 108 x^{3} - 81$ | $3$ | $4$ | $12$ | 12T119 | $[3/2, 3/2, 3/2]_{2}^{4}$ | |
| $107$ | $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 107.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 21557 | Data not computed | ||||||