Normalized defining polynomial
\( x^{21} - 714 x^{15} - 612 x^{14} + 118335 x^{9} + 202860 x^{8} + 86940 x^{7} - 960400 x^{3} - 2469600 x^{2} - 2116800 x - 604800 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(199436785556647682323353582644705335384911782862870773829206016000000000000=2^{40}\cdot 3^{20}\cdot 5^{12}\cdot 7^{34}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3452.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{27} a^{13} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{2}{27} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{8}{27} a - \frac{1}{9}$, $\frac{1}{270} a^{14} - \frac{7}{135} a^{8} - \frac{2}{45} a^{7} - \frac{1}{54} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{540} a^{15} - \frac{7}{270} a^{9} - \frac{1}{45} a^{8} - \frac{1}{108} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{540} a^{16} - \frac{7}{270} a^{10} - \frac{1}{45} a^{9} - \frac{1}{108} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{1080} a^{17} + \frac{23}{540} a^{11} - \frac{1}{90} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{85}{216} a^{5} - \frac{1}{18} a^{4} - \frac{7}{18} a^{3} - \frac{1}{3} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{6480} a^{18} + \frac{1}{3240} a^{17} + \frac{1}{1620} a^{16} - \frac{1}{1620} a^{15} - \frac{1}{810} a^{14} + \frac{1}{81} a^{13} - \frac{157}{3240} a^{12} - \frac{1}{162} a^{11} - \frac{1}{81} a^{10} - \frac{89}{810} a^{9} + \frac{2}{81} a^{8} + \frac{26}{405} a^{7} - \frac{109}{1296} a^{6} + \frac{209}{648} a^{5} + \frac{32}{81} a^{4} - \frac{137}{324} a^{3} - \frac{47}{162} a^{2} - \frac{17}{81} a - \frac{7}{27}$, $\frac{1}{4199040} a^{19} + \frac{23}{349920} a^{18} - \frac{11}{38880} a^{17} - \frac{1}{4860} a^{16} - \frac{1}{3240} a^{15} + \frac{12841}{699840} a^{13} + \frac{3149}{116640} a^{12} + \frac{197}{3888} a^{11} - \frac{163}{3240} a^{10} - \frac{73}{540} a^{9} - \frac{1}{30} a^{8} - \frac{2479}{279936} a^{7} + \frac{53}{432} a^{6} - \frac{11}{24} a^{5} + \frac{41}{108} a^{4} - \frac{1}{108} a^{3} + \frac{5}{18} a^{2} - \frac{13949}{52488} a + \frac{2173}{8748}$, $\frac{1}{10579162152960} a^{20} - \frac{86647}{1763193692160} a^{19} - \frac{20336303}{293865615360} a^{18} + \frac{4578137}{48977602560} a^{17} + \frac{1472161}{8162933760} a^{16} + \frac{942761}{1360488960} a^{15} + \frac{1181337577}{1763193692160} a^{14} + \frac{586151}{37791360} a^{13} - \frac{327569}{6298560} a^{12} + \frac{30503}{1049760} a^{11} + \frac{487}{174960} a^{10} + \frac{419}{29160} a^{9} - \frac{29749319147}{3526387384320} a^{8} - \frac{37520702909}{587731230720} a^{7} - \frac{49}{648} a^{6} - \frac{47}{162} a^{5} - \frac{35}{324} a^{4} + \frac{107}{324} a^{3} + \frac{62854577947}{132239526912} a^{2} - \frac{3697419731}{11019960576} a + \frac{420696907}{3673320192}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21225153183600000000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 384072192000 |
| The 472 conjugacy class representatives for t21n161 are not computed |
| Character table for t21n161 is not computed |
Intermediate fields
| 3.3.28392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.11.19 | $x^{4} + 22$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.8.20.22 | $x^{8} + 8 x^{6} + 10 x^{4} + 8 x^{3} + 28$ | $4$ | $2$ | $20$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.6.6 | $x^{6} + 3 x + 3$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.14.12.1 | $x^{14} - 5 x^{7} + 50$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||