Normalized defining polynomial
\( x^{21} - 5 x^{20} + 20 x^{19} - 76 x^{18} + 244 x^{17} - 536 x^{16} + 482 x^{15} + 655 x^{14} - 2970 x^{13} + 3601 x^{12} + 274 x^{11} - 4051 x^{10} + 4053 x^{9} + 428 x^{8} - 4459 x^{7} + 1158 x^{6} + 825 x^{5} + 130 x^{4} + 898 x^{3} - 516 x^{2} - 260 x + 73 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19349000070270070662923174526976=2^{14}\cdot 79^{8}\cdot 9199^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79, 9199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{12} - \frac{1}{5} a^{10} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{15} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{1100534863495279634731112047210404354025} a^{20} + \frac{22076711516653305098390898269911037978}{1100534863495279634731112047210404354025} a^{19} + \frac{101432086602746390160592607193452055579}{1100534863495279634731112047210404354025} a^{18} - \frac{28256367477578128281580944638165129154}{1100534863495279634731112047210404354025} a^{17} + \frac{8611119220915869557209428440423342687}{1100534863495279634731112047210404354025} a^{16} + \frac{16913217978861543421197036047927666596}{44021394539811185389244481888416174161} a^{15} + \frac{11128890999704026244331035020515316032}{1100534863495279634731112047210404354025} a^{14} - \frac{1366525110633727559549948411257453854}{1100534863495279634731112047210404354025} a^{13} - \frac{151634688922800554090893492016876727}{1100534863495279634731112047210404354025} a^{12} - \frac{19298528783772107755683468433905868631}{220106972699055926946222409442080870805} a^{11} - \frac{452115621589195785398790281054715990271}{1100534863495279634731112047210404354025} a^{10} - \frac{296348666093026584435330164891582391039}{1100534863495279634731112047210404354025} a^{9} - \frac{490111128614966550593931585827185082344}{1100534863495279634731112047210404354025} a^{8} - \frac{506807045569210341489505769880744152379}{1100534863495279634731112047210404354025} a^{7} - \frac{287070610316156985674912143978739927086}{1100534863495279634731112047210404354025} a^{6} - \frac{14719527445876293421603579126785377317}{44021394539811185389244481888416174161} a^{5} - \frac{97167629486818693911559037094278556324}{220106972699055926946222409442080870805} a^{4} + \frac{87742925632248513880832776620265502303}{220106972699055926946222409442080870805} a^{3} + \frac{142960717157288033079163349722134751183}{1100534863495279634731112047210404354025} a^{2} - \frac{65473958035375220520091248407471221962}{1100534863495279634731112047210404354025} a + \frac{40183349556655202949191387354727603339}{1100534863495279634731112047210404354025}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55415325.3394 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30240 |
| The 45 conjugacy class representatives for t21n74 |
| Character table for t21n74 is not computed |
Intermediate fields
| 3.3.316.1, 7.3.726721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.38 | $x^{14} + 4 x^{13} + 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{8} + 4 x^{6} - 2 x^{5} + 4 x^{3} - 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| $79$ | 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.5.0.1 | $x^{5} - x + 16$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 79.10.5.1 | $x^{10} - 12482 x^{6} + 38950081 x^{2} - 787726438144$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 9199 | Data not computed | ||||||