Normalized defining polynomial
\( x^{21} - 7 x^{20} - 179 x^{19} + 1247 x^{18} + 12609 x^{17} - 94719 x^{16} - 412892 x^{15} + 3985181 x^{14} + 4536598 x^{13} - 96835284 x^{12} + 99001136 x^{11} + 1243559662 x^{10} - 3705078327 x^{9} - 4772371825 x^{8} + 40608994780 x^{7} - 57026129008 x^{6} - 91270392192 x^{5} + 453911255946 x^{4} - 759285255711 x^{3} + 683243036028 x^{2} - 331364142738 x + 68436376461 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(177193979950258337575994520146048967739788554551296=2^{14}\cdot 3^{18}\cdot 13^{2}\cdot 73^{6}\cdot 1044747370309^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $247.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 73, 1044747370309$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{215051638442412608035050350328785971305989619486118869} a^{20} + \frac{16553219185634669557739609254582658874857083533838298}{215051638442412608035050350328785971305989619486118869} a^{19} - \frac{25274426415048655109244941765133664010380221405423998}{215051638442412608035050350328785971305989619486118869} a^{18} - \frac{58901422466679579374821469946634597787011956028563034}{215051638442412608035050350328785971305989619486118869} a^{17} + \frac{29803559590804591424864055326566212828381915821249888}{71683879480804202678350116776261990435329873162039623} a^{16} + \frac{977784141450364920923545861856034756285592510046219}{71683879480804202678350116776261990435329873162039623} a^{15} - \frac{55423128804754312490550987041034889543712415895331927}{215051638442412608035050350328785971305989619486118869} a^{14} + \frac{75933435975857568075114434664588057131396619767196308}{215051638442412608035050350328785971305989619486118869} a^{13} + \frac{45772572721736136528209600943157642898576027529155497}{215051638442412608035050350328785971305989619486118869} a^{12} + \frac{8437797844691079098925189116859610483300530643154206}{71683879480804202678350116776261990435329873162039623} a^{11} - \frac{90660423080609582862290732435360807980494342642418264}{215051638442412608035050350328785971305989619486118869} a^{10} - \frac{44170377199038352215748000134448517107832909784043574}{215051638442412608035050350328785971305989619486118869} a^{9} - \frac{28511048847269273895913816445870404811606330677173047}{71683879480804202678350116776261990435329873162039623} a^{8} - \frac{29926734922432559009434198617123931028058759030010312}{215051638442412608035050350328785971305989619486118869} a^{7} + \frac{9123109410733752352790774163716686875493935492893497}{215051638442412608035050350328785971305989619486118869} a^{6} + \frac{5191634639429814739253447545530802685859127645693427}{215051638442412608035050350328785971305989619486118869} a^{5} + \frac{15734640164354089969525151326965052623411311082091292}{71683879480804202678350116776261990435329873162039623} a^{4} + \frac{5266244967043044484885851531171725904691746806276556}{23894626493601400892783372258753996811776624387346541} a^{3} + \frac{15817176320178925588640837546013890136950287157351758}{71683879480804202678350116776261990435329873162039623} a^{2} + \frac{11340522366933963160845989172990495302834953637081644}{23894626493601400892783372258753996811776624387346541} a - \frac{7329012844175136818678614332795279952601362331742022}{23894626493601400892783372258753996811776624387346541}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103855409473000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.3.3884841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.34 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{4} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.12.12.9 | $x^{12} + 24 x^{11} + 21 x^{10} + 21 x^{9} + 63 x^{8} - 54 x^{7} + 81 x^{5} - 54 x^{4} - 27 x^{3} - 81 x^{2} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T41 | $[3/2, 3/2]_{2}^{4}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.6.4.3 | $x^{6} + 1533 x^{3} + 644809$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 73.9.0.1 | $x^{9} - 5 x + 26$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 1044747370309 | Data not computed | ||||||