Normalized defining polynomial
\( x^{21} - 15 x^{19} - 22 x^{18} + 27 x^{17} + 168 x^{16} + 105 x^{15} - 54 x^{14} - 1014 x^{13} + 1890 x^{12} + 13563 x^{11} - 25146 x^{10} + 13781 x^{9} + 77688 x^{8} - 265965 x^{7} - 246390 x^{6} + 126756 x^{5} - 76728 x^{4} - 22336 x^{3} + 60768 x^{2} - 40512 x + 27008 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1750980878682272844435550706829410304=2^{14}\cdot 3^{21}\cdot 71^{3}\cdot 211^{2}\cdot 8623^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 211, 8623$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{6} a^{15} - \frac{1}{2} a^{13} - \frac{1}{3} a^{12} - \frac{1}{2} a^{11} + \frac{1}{6} a^{9} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{12} a^{16} - \frac{1}{4} a^{14} - \frac{1}{6} a^{13} + \frac{1}{4} a^{12} + \frac{1}{12} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{6} a$, $\frac{1}{24} a^{17} + \frac{1}{24} a^{15} + \frac{5}{12} a^{14} + \frac{1}{8} a^{13} - \frac{1}{3} a^{12} + \frac{1}{24} a^{11} - \frac{1}{4} a^{10} + \frac{5}{12} a^{9} + \frac{5}{12} a^{8} + \frac{1}{8} a^{7} - \frac{1}{12} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{144} a^{18} - \frac{1}{48} a^{16} - \frac{1}{24} a^{15} - \frac{1}{16} a^{14} + \frac{1}{3} a^{13} + \frac{5}{16} a^{12} - \frac{3}{8} a^{11} + \frac{1}{24} a^{10} - \frac{3}{8} a^{9} - \frac{5}{16} a^{8} - \frac{11}{24} a^{7} - \frac{7}{144} a^{6} + \frac{5}{48} a^{4} + \frac{13}{72} a^{3} - \frac{1}{2} a^{2} - \frac{2}{9}$, $\frac{1}{288} a^{19} - \frac{1}{96} a^{17} - \frac{1}{48} a^{16} - \frac{1}{32} a^{15} + \frac{1}{6} a^{14} - \frac{11}{32} a^{13} + \frac{5}{16} a^{12} + \frac{1}{48} a^{11} - \frac{3}{16} a^{10} + \frac{11}{32} a^{9} - \frac{11}{48} a^{8} - \frac{7}{288} a^{7} - \frac{1}{2} a^{6} - \frac{43}{96} a^{5} + \frac{13}{144} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{9} a$, $\frac{1}{3368043633801133406733219681283225660470447046645150272} a^{20} - \frac{708769827536236509067821949702300145529388955055685}{842010908450283351683304920320806415117611761661287568} a^{19} + \frac{1218620684538304935065031934019275418181926063388103}{1122681211267044468911073227094408553490149015548383424} a^{18} - \frac{837567174719600926288450913305166776592528934121757}{187113535211174078151845537849068092248358169258063904} a^{17} - \frac{37312141887320429980266841443582348527760279993702899}{1122681211267044468911073227094408553490149015548383424} a^{16} - \frac{7398389637713686994345699013996190361525665588523417}{280670302816761117227768306773602138372537253887095856} a^{15} - \frac{159108267547482158965222094913130664233191743623503843}{374227070422348156303691075698136184496716338516127808} a^{14} - \frac{19042626017353992732773240878271633542272212354986871}{561340605633522234455536613547204276745074507774191712} a^{13} + \frac{183612756057328007010059632577474564495613933420401017}{561340605633522234455536613547204276745074507774191712} a^{12} + \frac{214631454539650094681928041308327823054117827138962043}{561340605633522234455536613547204276745074507774191712} a^{11} + \frac{541886455329014744879401342317209334031016628390428153}{1122681211267044468911073227094408553490149015548383424} a^{10} - \frac{110526119434125089150626361983729414527409303633445981}{561340605633522234455536613547204276745074507774191712} a^{9} - \frac{1129701331326007819332068382574946972149854212160981751}{3368043633801133406733219681283225660470447046645150272} a^{8} + \frac{197480840412896058764822839790515012527022105627483579}{842010908450283351683304920320806415117611761661287568} a^{7} - \frac{80302341794655477062246728046383289691379819495277441}{374227070422348156303691075698136184496716338516127808} a^{6} + \frac{468373012729049162807124060522267324914920091652525751}{1684021816900566703366609840641612830235223523322575136} a^{5} + \frac{68124963163300814022909657892576394144646142784943671}{421005454225141675841652460160403207558805880830643784} a^{4} - \frac{3828264841994787566233046971074317321795809875280616}{17541893926047569826735519173350133648283578367943491} a^{3} - \frac{4399334800116945498864806365589322147936848085585743}{52625681778142709480206557520050400944850735103830473} a^{2} - \frac{26276728279147625383588106971656799186018863074461661}{105251363556285418960413115040100801889701470207660946} a + \frac{3063191290206895193733158200440608842262294111093741}{17541893926047569826735519173350133648283578367943491}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14948518010.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | $15{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.9 | $x^{14} - 2 x^{13} - x^{12} - 2 x^{11} + 4 x^{10} - 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.9.9.8 | $x^{9} + 6 x^{7} + 18 x^{3} + 27$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.12.12.18 | $x^{12} + 42 x^{11} - 48 x^{10} - 114 x^{9} - 99 x^{8} - 54 x^{7} - 90 x^{6} - 108 x^{5} + 27 x^{4} - 27 x^{3} + 81 x^{2} + 81 x - 81$ | $3$ | $4$ | $12$ | 12T46 | $[3/2, 3/2]_{2}^{4}$ | |
| 71 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 8623 | Data not computed | ||||||