Normalized defining polynomial
\( x^{21} + 87 x^{19} - 58 x^{18} + 2538 x^{17} - 3384 x^{16} + 23268 x^{15} - 44280 x^{14} - 166662 x^{13} + 516592 x^{12} - 4292082 x^{11} + 12795612 x^{10} - 24847918 x^{9} + 43400664 x^{8} - 1311111 x^{7} - 213707802 x^{6} + 500038164 x^{5} - 575760456 x^{4} + 387377584 x^{3} - 155234016 x^{2} + 34496448 x - 3285376 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1750441539883089176601466819028470407898038292856832=2^{14}\cdot 3^{28}\cdot 577^{9}\cdot 25667^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $275.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 577, 25667$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{10} - \frac{1}{27} a^{7} + \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{11} - \frac{1}{27} a^{8} + \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} + \frac{1}{648} a^{13} + \frac{5}{972} a^{12} + \frac{5}{324} a^{11} + \frac{1}{81} a^{10} + \frac{1}{486} a^{9} - \frac{1}{27} a^{8} + \frac{1}{108} a^{7} + \frac{10}{243} a^{6} + \frac{17}{324} a^{5} + \frac{17}{162} a^{4} + \frac{13}{972} a^{3} - \frac{2}{81} a^{2} - \frac{245}{648} a + \frac{61}{972}$, $\frac{1}{15552} a^{16} - \frac{1}{7776} a^{15} + \frac{17}{5184} a^{14} - \frac{1}{486} a^{13} - \frac{31}{7776} a^{12} + \frac{7}{1296} a^{11} - \frac{65}{3888} a^{10} - \frac{17}{972} a^{9} + \frac{5}{864} a^{8} - \frac{97}{3888} a^{7} - \frac{125}{7776} a^{6} + \frac{7}{324} a^{5} - \frac{335}{7776} a^{4} + \frac{29}{3888} a^{3} - \frac{2293}{5184} a^{2} - \frac{1303}{3888} a + \frac{1697}{3888}$, $\frac{1}{124416} a^{17} - \frac{17}{124416} a^{15} - \frac{253}{62208} a^{14} + \frac{43}{20736} a^{13} - \frac{61}{15552} a^{12} + \frac{409}{31104} a^{11} + \frac{95}{5184} a^{10} - \frac{163}{62208} a^{9} - \frac{13}{7776} a^{8} + \frac{359}{6912} a^{7} - \frac{169}{31104} a^{6} + \frac{6337}{62208} a^{5} + \frac{821}{5184} a^{4} - \frac{14263}{124416} a^{3} + \frac{14707}{62208} a^{2} - \frac{367}{10368} a + \frac{4705}{15552}$, $\frac{1}{2985984} a^{18} - \frac{1}{497664} a^{17} - \frac{1}{36864} a^{16} - \frac{23}{248832} a^{15} - \frac{763}{497664} a^{14} + \frac{427}{82944} a^{13} - \frac{313}{248832} a^{12} - \frac{173}{62208} a^{11} - \frac{707}{165888} a^{10} + \frac{13621}{746496} a^{9} - \frac{15803}{497664} a^{8} + \frac{103}{13824} a^{7} - \frac{9137}{497664} a^{6} + \frac{6569}{248832} a^{5} - \frac{47503}{331776} a^{4} - \frac{7391}{62208} a^{3} - \frac{7241}{124416} a^{2} + \frac{565}{5184} a - \frac{47219}{186624}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} - \frac{31}{7962624} a^{17} - \frac{73}{3981312} a^{16} - \frac{95}{442368} a^{15} - \frac{2813}{995328} a^{14} - \frac{823}{1990656} a^{13} - \frac{659}{995328} a^{12} + \frac{44263}{3981312} a^{11} + \frac{8237}{2985984} a^{10} + \frac{117667}{11943936} a^{9} - \frac{106109}{1990656} a^{8} + \frac{127303}{3981312} a^{7} - \frac{107}{82944} a^{6} - \frac{1208165}{7962624} a^{5} + \frac{541787}{3981312} a^{4} + \frac{18491}{995328} a^{3} - \frac{98765}{497664} a^{2} + \frac{599413}{1492992} a - \frac{95603}{746496}$, $\frac{1}{191102976} a^{20} - \frac{1}{95551488} a^{19} + \frac{1}{7077888} a^{18} + \frac{1}{1327104} a^{17} - \frac{227}{10616832} a^{16} + \frac{2735}{15925248} a^{15} - \frac{24299}{15925248} a^{14} - \frac{14981}{3981312} a^{13} + \frac{182095}{31850496} a^{12} - \frac{41201}{47775744} a^{11} - \frac{477301}{95551488} a^{10} + \frac{28025}{3981312} a^{9} - \frac{1119}{131072} a^{8} - \frac{104683}{5308416} a^{7} - \frac{579749}{63700992} a^{6} + \frac{507899}{15925248} a^{5} - \frac{376015}{15925248} a^{4} + \frac{146951}{1990656} a^{3} + \frac{4543783}{11943936} a^{2} - \frac{1033055}{2985984} a - \frac{191153}{995328}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 588212443994000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 171 conjugacy class representatives for t21n122 are not computed |
| Character table for t21n122 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.23 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T6 | $[2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 577 | Data not computed | ||||||
| 25667 | Data not computed | ||||||