Normalized defining polynomial
\( x^{21} - 35 x^{19} + 182 x^{17} + 5075 x^{15} - 1472 x^{14} - 53753 x^{13} + 28532 x^{12} - 73549 x^{11} + 318976 x^{10} + 2259145 x^{9} - 3575796 x^{8} - 5532374 x^{7} - 29660876 x^{6} - 25531520 x^{5} + 79733192 x^{4} - 37360225 x^{3} + 233927960 x^{2} - 169256528 x + 25712576 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161796298875473600212450076579403530770109956096=2^{18}\cdot 7^{38}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{3}$, $\frac{1}{131938} a^{18} + \frac{79}{1609} a^{17} + \frac{24565}{131938} a^{16} + \frac{717}{3218} a^{15} + \frac{11571}{65969} a^{14} - \frac{194}{1609} a^{13} - \frac{29299}{65969} a^{12} - \frac{28780}{65969} a^{11} + \frac{7133}{65969} a^{10} + \frac{17095}{65969} a^{9} - \frac{16418}{65969} a^{8} + \frac{17915}{65969} a^{7} - \frac{29354}{65969} a^{6} + \frac{31026}{65969} a^{5} + \frac{18411}{131938} a^{4} - \frac{400}{1609} a^{3} - \frac{1091}{3218} a^{2} - \frac{91}{3218} a + \frac{715}{1609}$, $\frac{1}{263876} a^{19} + \frac{16365}{263876} a^{17} - \frac{627}{3218} a^{16} - \frac{12045}{131938} a^{15} - \frac{294}{1609} a^{14} + \frac{15817}{263876} a^{13} + \frac{21649}{65969} a^{12} - \frac{34811}{263876} a^{11} + \frac{26895}{65969} a^{10} - \frac{57723}{263876} a^{9} - \frac{17139}{65969} a^{8} - \frac{20537}{263876} a^{7} + \frac{31790}{65969} a^{6} - \frac{1332}{65969} a^{5} + \frac{638}{1609} a^{4} + \frac{969}{3218} a^{3} - \frac{465}{3218} a^{2} + \frac{425}{6436} a - \frac{534}{1609}$, $\frac{1}{1736494583989836157700070388418262987816724438778471804988306397594206256} a^{20} - \frac{145927489640922038668770327776868035916636380691803229738841337155}{217061822998729519712508798552282873477090554847308975623538299699275782} a^{19} + \frac{4441302066461142301725493587912989820574144506443421843871166149789}{1736494583989836157700070388418262987816724438778471804988306397594206256} a^{18} - \frac{9595681350082345208887822812645241128430021800125071430766592901908130}{108530911499364759856254399276141436738545277423654487811769149849637891} a^{17} - \frac{171042906997814582258291630916756343765100218434532340811559524258687145}{868247291994918078850035194209131493908362219389235902494153198797103128} a^{16} + \frac{53423740189308318928653263088891099077223185812393537164593286736618225}{217061822998729519712508798552282873477090554847308975623538299699275782} a^{15} - \frac{41697086510946852459406300810263476630578986587207029981418692701969829}{1736494583989836157700070388418262987816724438778471804988306397594206256} a^{14} - \frac{16924547302938619528659614218602418874787941604609180920993922501444275}{217061822998729519712508798552282873477090554847308975623538299699275782} a^{13} - \frac{279287234682269523812669279063665280896259642235462206992669471871169841}{1736494583989836157700070388418262987816724438778471804988306397594206256} a^{12} - \frac{166433526986514527788659017884333196782916576444890490076321529436515049}{434123645997459039425017597104565746954181109694617951247076599398551564} a^{11} + \frac{422030752366650959401952348728065794571381179276291374038244688972720875}{1736494583989836157700070388418262987816724438778471804988306397594206256} a^{10} + \frac{38569402786541918719422408692718184781206439276024726221876402298371559}{217061822998729519712508798552282873477090554847308975623538299699275782} a^{9} + \frac{410644210019275712541662925222335506804888819312095453353177126083644993}{1736494583989836157700070388418262987816724438778471804988306397594206256} a^{8} - \frac{42036598080529542002079354045653826395438409387767893975643301773146691}{434123645997459039425017597104565746954181109694617951247076599398551564} a^{7} + \frac{367238211916471365103575669462478407518887451828180925034690006206498401}{868247291994918078850035194209131493908362219389235902494153198797103128} a^{6} - \frac{88031469927074855315191686663030201987162820450151837973658842731538579}{434123645997459039425017597104565746954181109694617951247076599398551564} a^{5} + \frac{89615278761922691443753490417424338723800043834956173066920497745934727}{217061822998729519712508798552282873477090554847308975623538299699275782} a^{4} - \frac{950635929051839055764379399828098590092949852750346424145256189035479}{2647095402423530728201326811613205774110860424967182629555345118283851} a^{3} + \frac{12482436457570121999952198640693264364862584718539768062916688403829623}{42353526438776491651221228985811292385773766799474922072885521892541616} a^{2} + \frac{1389024455462496485727419591589728844506665218990602299343635547123405}{5294190804847061456402653623226411548221720849934365259110690236567702} a + \frac{987685864367368310667555231161712905030384135351917570147380073714937}{2647095402423530728201326811613205774110860424967182629555345118283851}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10593517930800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4116 |
| The 53 conjugacy class representatives for t21n36 are not computed |
| Character table for t21n36 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $21$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 7 | Data not computed | ||||||
| 41 | Data not computed | ||||||