Normalized defining polynomial
\( x^{21} - 45 x^{19} - 30 x^{18} + 882 x^{17} + 1176 x^{16} - 9409 x^{15} - 19602 x^{14} + 53352 x^{13} + 174216 x^{12} - 94554 x^{11} - 826860 x^{10} - 579773 x^{9} + 1653228 x^{8} + 3240357 x^{7} + 860570 x^{6} - 3669948 x^{5} - 5615352 x^{4} - 4013328 x^{3} - 1626912 x^{2} - 361536 x - 34432 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15777795267852014316785130322548660781056=2^{14}\cdot 3^{22}\cdot 269^{2}\cdot 2741^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 269, 2741$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{17}{64} a^{14} - \frac{11}{32} a^{12} + \frac{7}{16} a^{11} - \frac{9}{64} a^{10} - \frac{1}{16} a^{9} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} + \frac{3}{32} a^{6} + \frac{19}{64} a^{4} - \frac{7}{32} a^{3} - \frac{15}{64} a^{2} + \frac{7}{16} a + \frac{1}{16}$, $\frac{1}{512} a^{17} - \frac{21}{512} a^{15} - \frac{47}{256} a^{14} - \frac{43}{256} a^{13} - \frac{31}{64} a^{12} + \frac{191}{512} a^{11} + \frac{7}{256} a^{10} + \frac{3}{32} a^{9} - \frac{13}{64} a^{8} - \frac{69}{256} a^{7} + \frac{61}{128} a^{6} - \frac{173}{512} a^{5} - \frac{13}{128} a^{4} + \frac{141}{512} a^{3} - \frac{35}{256} a^{2} + \frac{3}{128} a - \frac{17}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{21}{4096} a^{16} - \frac{13}{1024} a^{15} + \frac{307}{2048} a^{14} - \frac{147}{1024} a^{13} + \frac{1199}{4096} a^{12} + \frac{41}{256} a^{11} + \frac{5}{1024} a^{10} - \frac{153}{512} a^{9} - \frac{477}{2048} a^{8} - \frac{255}{512} a^{7} - \frac{149}{4096} a^{6} + \frac{659}{2048} a^{5} - \frac{1291}{4096} a^{4} + \frac{5}{128} a^{3} - \frac{45}{512} a^{2} - \frac{53}{128} a + \frac{81}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{17}{32768} a^{17} - \frac{5}{16384} a^{16} + \frac{359}{16384} a^{15} - \frac{227}{4096} a^{14} + \frac{6471}{32768} a^{13} - \frac{871}{16384} a^{12} + \frac{1725}{8192} a^{11} - \frac{335}{2048} a^{10} + \frac{4843}{16384} a^{9} - \frac{3105}{8192} a^{8} + \frac{12123}{32768} a^{7} + \frac{869}{2048} a^{6} - \frac{12119}{32768} a^{5} - \frac{2725}{16384} a^{4} + \frac{939}{4096} a^{3} - \frac{573}{2048} a^{2} + \frac{805}{2048} a + \frac{431}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{23}{262144} a^{18} - \frac{15}{16384} a^{17} - \frac{343}{131072} a^{16} - \frac{209}{65536} a^{15} + \frac{34871}{262144} a^{14} - \frac{16521}{65536} a^{13} + \frac{2287}{8192} a^{12} - \frac{6631}{32768} a^{11} - \frac{10597}{131072} a^{10} + \frac{769}{2048} a^{9} - \frac{25149}{262144} a^{8} + \frac{10809}{131072} a^{7} + \frac{127305}{262144} a^{6} - \frac{23029}{65536} a^{5} + \frac{22199}{65536} a^{4} - \frac{303}{4096} a^{3} + \frac{6167}{16384} a^{2} + \frac{1263}{4096} a + \frac{1565}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2054704798480 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.3.7513081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $21$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.32 | $x^{14} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} - 2 x^{7} + 4 x^{6} - 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.6.2 | $x^{6} + 6 x^{4} + 6 x^{3} + 18$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 3.12.12.15 | $x^{12} + 12 x^{11} + 87 x^{10} + 57 x^{9} + 81 x^{8} - 36 x^{6} + 54 x^{5} + 54 x^{4} + 54 x^{3} - 81 x - 81$ | $3$ | $4$ | $12$ | 12T173 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| 269 | Data not computed | ||||||
| 2741 | Data not computed | ||||||