Normalized defining polynomial
\( x^{21} - 15 x^{19} - 4 x^{18} + 93 x^{17} + 12 x^{16} - 281 x^{15} + 63 x^{14} + 375 x^{13} - 266 x^{12} - 23 x^{11} + 432 x^{10} - 39 x^{9} - 220 x^{8} - 298 x^{7} + 36 x^{6} + 171 x^{5} + 26 x^{4} - 33 x^{3} - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(155896945048377999491545839641=7^{14}\cdot 593^{3}\cdot 1033^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 593, 1033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2663940783269672738804407} a^{20} - \frac{1108193198713363173390215}{2663940783269672738804407} a^{19} - \frac{280619471151190939279528}{2663940783269672738804407} a^{18} + \frac{1209305204744802051763785}{2663940783269672738804407} a^{17} + \frac{1050844979362380785033930}{2663940783269672738804407} a^{16} - \frac{488623592641786566777228}{2663940783269672738804407} a^{15} + \frac{577355186122337007487985}{2663940783269672738804407} a^{14} + \frac{603263260087974047378388}{2663940783269672738804407} a^{13} - \frac{389489834413244620747733}{2663940783269672738804407} a^{12} + \frac{1310486505281433663334754}{2663940783269672738804407} a^{11} - \frac{1048729983896256325090096}{2663940783269672738804407} a^{10} + \frac{390217669516582945802006}{2663940783269672738804407} a^{9} + \frac{189726055948152998344830}{2663940783269672738804407} a^{8} + \frac{501274615489938950449587}{2663940783269672738804407} a^{7} + \frac{979874334769603361288035}{2663940783269672738804407} a^{6} + \frac{691130524777384509222477}{2663940783269672738804407} a^{5} + \frac{1094668764384174267729213}{2663940783269672738804407} a^{4} - \frac{412755546857005305279249}{2663940783269672738804407} a^{3} - \frac{543834043020582656504093}{2663940783269672738804407} a^{2} - \frac{209500131528907771489760}{2663940783269672738804407} a - \frac{89332762952120196100386}{2663940783269672738804407}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4936254.92703 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 45 conjugacy class representatives for t21n56 |
| Character table for t21n56 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.3.612569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | $15{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 593 | Data not computed | ||||||
| 1033 | Data not computed | ||||||