Normalized defining polynomial
\( x^{21} - x^{20} + 3 x^{19} - 8 x^{17} + 11 x^{16} - 38 x^{15} - 57 x^{14} - 99 x^{13} - 54 x^{12} + 84 x^{11} + 86 x^{10} + 362 x^{9} - 80 x^{8} - 244 x^{7} + 140 x^{6} - 71 x^{5} + 3 x^{4} + 9 x^{3} - 7 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(155640552803090077912213347113=7^{14}\cdot 71^{3}\cdot 8623^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 71, 8623$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{3}{23} a^{17} - \frac{4}{23} a^{16} + \frac{11}{23} a^{15} - \frac{4}{23} a^{14} + \frac{2}{23} a^{13} + \frac{4}{23} a^{12} - \frac{1}{23} a^{11} - \frac{11}{23} a^{10} + \frac{4}{23} a^{9} - \frac{5}{23} a^{8} + \frac{9}{23} a^{7} + \frac{1}{23} a^{6} + \frac{10}{23} a^{4} + \frac{11}{23} a^{3} - \frac{10}{23} a^{2} - \frac{4}{23} a + \frac{3}{23}$, $\frac{1}{23} a^{19} + \frac{10}{23} a^{17} + \frac{9}{23} a^{15} - \frac{9}{23} a^{14} - \frac{2}{23} a^{13} + \frac{10}{23} a^{12} - \frac{8}{23} a^{11} - \frac{9}{23} a^{10} + \frac{6}{23} a^{9} + \frac{1}{23} a^{8} - \frac{3}{23} a^{7} - \frac{3}{23} a^{6} + \frac{10}{23} a^{5} + \frac{4}{23} a^{4} + \frac{3}{23} a^{3} + \frac{3}{23} a^{2} - \frac{8}{23} a - \frac{9}{23}$, $\frac{1}{4376424924938537193763} a^{20} + \frac{51652021723371314564}{4376424924938537193763} a^{19} - \frac{55907873299649760041}{4376424924938537193763} a^{18} - \frac{6362282514137072212}{190279344562545095381} a^{17} + \frac{1406312832693885503359}{4376424924938537193763} a^{16} - \frac{333617508304436477308}{4376424924938537193763} a^{15} + \frac{507655062887162933970}{4376424924938537193763} a^{14} - \frac{941265566122452520273}{4376424924938537193763} a^{13} + \frac{1957599841894456306586}{4376424924938537193763} a^{12} + \frac{1771843031667840950956}{4376424924938537193763} a^{11} - \frac{1141250932321788273186}{4376424924938537193763} a^{10} - \frac{1504602893921909686732}{4376424924938537193763} a^{9} + \frac{1712772511525964391775}{4376424924938537193763} a^{8} + \frac{1982257535881986594604}{4376424924938537193763} a^{7} - \frac{1821346203092740079174}{4376424924938537193763} a^{6} + \frac{641610731920765294363}{4376424924938537193763} a^{5} - \frac{443025497482896108851}{4376424924938537193763} a^{4} - \frac{402165530376285841847}{4376424924938537193763} a^{3} - \frac{1165883532532830877592}{4376424924938537193763} a^{2} + \frac{863186137706479669663}{4376424924938537193763} a - \frac{1993338329470358432300}{4376424924938537193763}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4976307.00235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 45 conjugacy class representatives for t21n56 |
| Character table for t21n56 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{9}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | $15{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 71 | Data not computed | ||||||
| 8623 | Data not computed | ||||||