Normalized defining polynomial
\( x^{21} + 96 x^{19} - 64 x^{18} + 2457 x^{17} - 3276 x^{16} + 5007 x^{15} - 7830 x^{14} - 330687 x^{13} + 894592 x^{12} - 1467288 x^{11} + 2303232 x^{10} - 705280 x^{9} - 5911488 x^{8} + 14850711 x^{7} - 23979414 x^{6} + 31209516 x^{5} - 29920248 x^{4} + 19112272 x^{3} - 7578144 x^{2} + 1684032 x - 160384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(148644694877567190405834966748762728825589403667677184=2^{14}\cdot 3^{28}\cdot 7^{2}\cdot 43^{18}\cdot 179^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $340.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43, 179$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{10} - \frac{1}{27} a^{7} + \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{11} - \frac{1}{27} a^{8} + \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{13608} a^{15} - \frac{1}{162} a^{14} + \frac{1}{378} a^{13} - \frac{10}{1701} a^{12} - \frac{11}{648} a^{11} + \frac{139}{13608} a^{9} + \frac{11}{756} a^{8} + \frac{1}{72} a^{7} + \frac{155}{3402} a^{6} + \frac{181}{1134} a^{5} - \frac{23}{189} a^{4} + \frac{136}{1701} a^{3} - \frac{5}{81} a^{2} - \frac{13}{72} a + \frac{325}{972}$, $\frac{1}{108864} a^{16} - \frac{1}{54432} a^{15} - \frac{11}{9072} a^{14} + \frac{65}{13608} a^{13} - \frac{71}{108864} a^{12} - \frac{35}{2592} a^{11} - \frac{29}{108864} a^{10} + \frac{337}{27216} a^{9} - \frac{247}{12096} a^{8} - \frac{2777}{54432} a^{7} + \frac{653}{27216} a^{6} - \frac{635}{4536} a^{5} + \frac{74}{1701} a^{4} - \frac{244}{1701} a^{3} - \frac{2309}{5184} a^{2} + \frac{1001}{3888} a + \frac{497}{3888}$, $\frac{1}{870912} a^{17} - \frac{1}{108864} a^{15} - \frac{10}{1701} a^{14} - \frac{1277}{290304} a^{13} - \frac{947}{217728} a^{12} - \frac{13721}{870912} a^{11} - \frac{233}{145152} a^{10} - \frac{9959}{870912} a^{9} + \frac{425}{7776} a^{8} - \frac{199}{6048} a^{7} - \frac{1235}{27216} a^{6} + \frac{4595}{54432} a^{5} + \frac{131}{4536} a^{4} + \frac{3095}{870912} a^{3} - \frac{3869}{62208} a^{2} + \frac{3937}{10368} a + \frac{2545}{15552}$, $\frac{1}{20901888} a^{18} - \frac{1}{3483648} a^{17} - \frac{1}{290304} a^{16} - \frac{1}{62208} a^{15} + \frac{22531}{6967296} a^{14} - \frac{7097}{1161216} a^{13} + \frac{283}{110592} a^{12} - \frac{3889}{217728} a^{11} - \frac{2777}{774144} a^{10} + \frac{94253}{10450944} a^{9} - \frac{18847}{435456} a^{8} + \frac{137}{5184} a^{7} + \frac{14797}{435456} a^{6} - \frac{1133}{217728} a^{5} - \frac{375905}{2322432} a^{4} - \frac{3529}{72576} a^{3} - \frac{52121}{124416} a^{2} + \frac{343}{1728} a + \frac{68125}{186624}$, $\frac{1}{167215104} a^{19} - \frac{1}{41803776} a^{18} - \frac{1}{1990656} a^{17} - \frac{5}{1741824} a^{16} + \frac{29}{884736} a^{15} - \frac{10597}{3483648} a^{14} - \frac{1451}{2654208} a^{13} + \frac{43669}{27869184} a^{12} - \frac{51415}{7962624} a^{11} - \frac{764507}{41803776} a^{10} - \frac{589639}{41803776} a^{9} - \frac{83365}{1741824} a^{8} + \frac{182965}{3483648} a^{7} - \frac{295}{18144} a^{6} - \frac{4051043}{55738368} a^{5} + \frac{406789}{3096576} a^{4} + \frac{205817}{6967296} a^{3} + \frac{159139}{497664} a^{2} - \frac{452219}{1492992} a + \frac{61981}{746496}$, $\frac{1}{1337720832} a^{20} - \frac{1}{668860416} a^{19} - \frac{1}{47775744} a^{18} + \frac{1}{2654208} a^{17} - \frac{29}{445906944} a^{16} - \frac{6661}{222953472} a^{15} + \frac{1203481}{445906944} a^{14} + \frac{137447}{111476736} a^{13} - \frac{112933}{49545216} a^{12} + \frac{4840103}{668860416} a^{11} + \frac{4402387}{334430208} a^{10} - \frac{2227571}{167215104} a^{9} + \frac{30749}{1327104} a^{8} + \frac{322453}{13934592} a^{7} + \frac{8059805}{445906944} a^{6} - \frac{14908315}{111476736} a^{5} - \frac{9768209}{111476736} a^{4} - \frac{290099}{4644864} a^{3} - \frac{4174793}{11943936} a^{2} + \frac{61489}{2985984} a - \frac{316243}{2985984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9231754719210000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 979776 |
| The 177 conjugacy class representatives for t21n120 are not computed |
| Character table for t21n120 is not computed |
Intermediate fields
| 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.32 | $x^{14} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} - 2 x^{7} + 4 x^{6} - 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 179 | Data not computed | ||||||