Normalized defining polynomial
\( x^{21} - 7 x^{20} + 7 x^{19} + 55 x^{18} - 132 x^{17} - 112 x^{16} + 589 x^{15} - 188 x^{14} - 1078 x^{13} + 1042 x^{12} + 579 x^{11} - 1297 x^{10} + 411 x^{9} + 431 x^{8} - 127 x^{7} - 455 x^{6} - 126 x^{5} + 888 x^{4} - 460 x^{3} - 146 x^{2} + 127 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13686230803976276974088591656489=17^{10}\cdot 19^{2}\cdot 61^{2}\cdot 131^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19, 61, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{10841548087447601491} a^{20} - \frac{442549177046245139}{10841548087447601491} a^{19} - \frac{5018062018132135745}{10841548087447601491} a^{18} + \frac{1153303808564252869}{10841548087447601491} a^{17} + \frac{2525618780183911700}{10841548087447601491} a^{16} - \frac{2762409245051193301}{10841548087447601491} a^{15} + \frac{4376565709993137047}{10841548087447601491} a^{14} + \frac{3238178274833191457}{10841548087447601491} a^{13} - \frac{2278891225341184453}{10841548087447601491} a^{12} + \frac{2065731360787544045}{10841548087447601491} a^{11} - \frac{73814811667306231}{10841548087447601491} a^{10} - \frac{36707981851510840}{10841548087447601491} a^{9} + \frac{3722348396720939947}{10841548087447601491} a^{8} + \frac{938569702924903725}{10841548087447601491} a^{7} + \frac{4354579314332449430}{10841548087447601491} a^{6} + \frac{4129397867499556149}{10841548087447601491} a^{5} - \frac{3757111714672627400}{10841548087447601491} a^{4} - \frac{1752561724223902028}{10841548087447601491} a^{3} - \frac{1838098464462415446}{10841548087447601491} a^{2} - \frac{393482417394526103}{10841548087447601491} a - \frac{1942482942407932894}{10841548087447601491}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39718417.9458 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5511240 |
| The 246 conjugacy class representatives for t21n132 are not computed |
| Character table for t21n132 is not computed |
Intermediate fields
| 7.3.4959529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | $21$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | R | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.9.0.1 | $x^{9} - 5 x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ |
| 17.12.10.2 | $x^{12} + 85 x^{6} + 2601$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |
| 19 | Data not computed | ||||||
| $61$ | 61.3.2.3 | $x^{3} - 244$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 61.6.0.1 | $x^{6} - 4 x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 61.12.0.1 | $x^{12} - x + 44$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $131$ | $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{131}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 131.6.0.1 | $x^{6} - 3 x + 54$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 131.9.6.1 | $x^{9} - 17161 x^{3} + 20232819$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |