Normalized defining polynomial
\( x^{21} - 51 x^{19} - 34 x^{18} + 1107 x^{17} + 1476 x^{16} - 12765 x^{15} - 26514 x^{14} + 76527 x^{13} + 247280 x^{12} - 142695 x^{11} - 1201362 x^{10} - 843421 x^{9} + 2387484 x^{8} + 4706427 x^{7} + 1346134 x^{6} - 5103108 x^{5} - 7893576 x^{4} - 5652464 x^{3} - 2292192 x^{2} - 509376 x - 48512 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13096950897107618944566483939232950779904=2^{33}\cdot 3^{21}\cdot 317^{6}\cdot 379^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 317, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{23}{64} a^{14} - \frac{1}{4} a^{13} + \frac{27}{64} a^{12} + \frac{5}{32} a^{11} - \frac{17}{64} a^{10} + \frac{3}{16} a^{9} + \frac{31}{64} a^{8} - \frac{1}{32} a^{7} + \frac{13}{64} a^{6} - \frac{3}{8} a^{5} + \frac{27}{64} a^{4} - \frac{15}{32} a^{3} - \frac{9}{64} a^{2} + \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} - \frac{27}{512} a^{15} - \frac{49}{256} a^{14} - \frac{5}{512} a^{13} - \frac{43}{128} a^{12} - \frac{229}{512} a^{11} - \frac{105}{256} a^{10} - \frac{121}{512} a^{9} - \frac{3}{8} a^{8} + \frac{209}{512} a^{7} + \frac{7}{256} a^{6} + \frac{75}{512} a^{5} - \frac{53}{128} a^{4} - \frac{205}{512} a^{3} + \frac{43}{256} a^{2} - \frac{11}{128} a - \frac{23}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} - \frac{27}{4096} a^{16} - \frac{11}{1024} a^{15} + \frac{703}{4096} a^{14} - \frac{81}{2048} a^{13} - \frac{1421}{4096} a^{12} + \frac{159}{512} a^{11} + \frac{299}{4096} a^{10} - \frac{487}{2048} a^{9} - \frac{1455}{4096} a^{8} - \frac{101}{1024} a^{7} - \frac{465}{4096} a^{6} - \frac{693}{2048} a^{5} - \frac{805}{4096} a^{4} - \frac{1}{256} a^{3} + \frac{165}{512} a^{2} - \frac{19}{128} a - \frac{41}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{23}{32768} a^{17} + \frac{5}{16384} a^{16} + \frac{791}{32768} a^{15} - \frac{49}{1024} a^{14} + \frac{2999}{32768} a^{13} + \frac{4105}{16384} a^{12} + \frac{14139}{32768} a^{11} - \frac{1417}{8192} a^{10} - \frac{15891}{32768} a^{9} + \frac{3301}{16384} a^{8} - \frac{11945}{32768} a^{7} - \frac{1081}{4096} a^{6} + \frac{10159}{32768} a^{5} - \frac{5347}{16384} a^{4} + \frac{1193}{4096} a^{3} + \frac{53}{2048} a^{2} - \frac{221}{2048} a - \frac{215}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{17}{262144} a^{18} - \frac{1}{1024} a^{17} - \frac{877}{262144} a^{16} + \frac{181}{131072} a^{15} + \frac{38583}{262144} a^{14} - \frac{12425}{65536} a^{13} - \frac{93081}{262144} a^{12} + \frac{31135}{131072} a^{11} + \frac{100309}{262144} a^{10} - \frac{6597}{32768} a^{9} - \frac{130989}{262144} a^{8} - \frac{36703}{131072} a^{7} + \frac{125119}{262144} a^{6} - \frac{1419}{65536} a^{5} - \frac{1959}{65536} a^{4} + \frac{223}{1024} a^{3} + \frac{3329}{16384} a^{2} - \frac{535}{4096} a - \frac{277}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5670216569210 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.3.6431296.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.250 | $x^{14} + 2 x^{12} + 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{7} + 4 x^{6} + 2 x^{4} - 2 x^{2} - 2$ | $14$ | $1$ | $27$ | 14T18 | $[20/7, 20/7, 20/7, 3]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| 317 | Data not computed | ||||||
| 379 | Data not computed | ||||||