Normalized defining polynomial
\( x^{21} - 30 x^{19} - 34 x^{18} + 387 x^{17} + 954 x^{16} - 2237 x^{15} - 10944 x^{14} - 525 x^{13} + 63996 x^{12} + 83790 x^{11} - 181800 x^{10} - 495124 x^{9} + 82314 x^{8} + 1330701 x^{7} + 810842 x^{6} - 1778580 x^{5} - 1822800 x^{4} + 1114720 x^{3} + 1473696 x^{2} - 332928 x - 341632 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13025357904654475011765942398926848=2^{14}\cdot 3^{21}\cdot 17^{2}\cdot 59^{3}\cdot 10859^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 59, 10859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{5}{16} a^{14} + \frac{1}{8} a^{13} + \frac{7}{16} a^{12} - \frac{1}{2} a^{11} + \frac{7}{16} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{3}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{5}{32} a^{15} + \frac{1}{16} a^{14} - \frac{9}{32} a^{13} - \frac{1}{4} a^{12} + \frac{7}{32} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} + \frac{1}{4} a^{8} - \frac{3}{8} a^{7} + \frac{5}{16} a^{6} - \frac{3}{32} a^{5} - \frac{7}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{59301567391781369823449964967650167409993430547890521664} a^{20} + \frac{112194954309052420717172860685364388754713247756366073}{29650783695890684911724982483825083704996715273945260832} a^{19} + \frac{875568999895128920897551898939521497327802201077867783}{29650783695890684911724982483825083704996715273945260832} a^{18} + \frac{384442623579062316644263330766679847238264034500747549}{29650783695890684911724982483825083704996715273945260832} a^{17} - \frac{152565986336744042228644797748983509622730000153110909}{2044881634199357580118964309229316117585980363720362816} a^{16} + \frac{1577289072309748426688938309939584316872371464140107301}{7412695923972671227931245620956270926249178818486315208} a^{15} - \frac{29083708283157108277378744168470695216895525409846376789}{59301567391781369823449964967650167409993430547890521664} a^{14} + \frac{5822302138210553559905273729429505346525983164188405403}{29650783695890684911724982483825083704996715273945260832} a^{13} + \frac{16150221125489504758471980078334923776779027959477447111}{59301567391781369823449964967650167409993430547890521664} a^{12} + \frac{11343664201464129654428628113107962113796106571744960077}{29650783695890684911724982483825083704996715273945260832} a^{11} - \frac{12544765502672511325149283994069071844355660218960742315}{29650783695890684911724982483825083704996715273945260832} a^{10} + \frac{3454498833616001242883834416438983000314186583513390259}{14825391847945342455862491241912541852498357636972630416} a^{9} - \frac{349059782295651930810068634745206320031284196873154735}{14825391847945342455862491241912541852498357636972630416} a^{8} - \frac{10746854784326546001171679248447822255833406458244860215}{29650783695890684911724982483825083704996715273945260832} a^{7} + \frac{8386923092786653138078489009985463940674309265361947473}{59301567391781369823449964967650167409993430547890521664} a^{6} - \frac{4702524541876513918643725963309157424632442292544262961}{14825391847945342455862491241912541852498357636972630416} a^{5} + \frac{1542492817632328432578214403051978385766959122073024283}{14825391847945342455862491241912541852498357636972630416} a^{4} + \frac{2365937357010420688928748770807672551810050016420116507}{7412695923972671227931245620956270926249178818486315208} a^{3} - \frac{416897225462638346179456016767073548694980105781293911}{1853173980993167806982811405239067731562294704621578802} a^{2} + \frac{266987889138032157636456711280944948899119521521612009}{926586990496583903491405702619533865781147352310789401} a + \frac{67868557173578194595586516185996820082738118640548858}{926586990496583903491405702619533865781147352310789401}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1452098719.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.3.640681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.9 | $x^{14} - 2 x^{13} - x^{12} - 2 x^{11} + 4 x^{10} - 2 x^{9} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 2 x^{5} + 4 x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||
| 59 | Data not computed | ||||||
| 10859 | Data not computed | ||||||