Normalized defining polynomial
\( x^{21} - x^{20} - 12 x^{19} + 8 x^{18} + 49 x^{17} - 14 x^{16} - 94 x^{15} + 123 x^{14} - 7 x^{13} - 1078 x^{12} + 1150 x^{11} + 1019 x^{10} - 4414 x^{9} + 6562 x^{8} + 4203 x^{7} - 14456 x^{6} + 3035 x^{5} + 9936 x^{4} - 5649 x^{3} - 1996 x^{2} + 1631 x - 79 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1115970269016553289813936756281=13^{16}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{561034684070749862481847410909310375152731} a^{20} - \frac{237453031596959799903235018619163827713867}{561034684070749862481847410909310375152731} a^{19} - \frac{58068034783322943716590538695717706033787}{561034684070749862481847410909310375152731} a^{18} - \frac{121779857785771951366576783422434476213729}{561034684070749862481847410909310375152731} a^{17} + \frac{99941762291471144391801274591165543871387}{561034684070749862481847410909310375152731} a^{16} - \frac{4427474690987737058268689603186600648090}{43156514159288450960142108531485413473287} a^{15} - \frac{32474667626737125547576226389429889713639}{561034684070749862481847410909310375152731} a^{14} - \frac{206209840435817698991827653886593418049951}{561034684070749862481847410909310375152731} a^{13} + \frac{140464067057230742869247160574661376835208}{561034684070749862481847410909310375152731} a^{12} + \frac{121111374693046544604316009044949910653031}{561034684070749862481847410909310375152731} a^{11} - \frac{148761341497779463853151431231130594915889}{561034684070749862481847410909310375152731} a^{10} + \frac{85304839928811439212215518421700954052636}{561034684070749862481847410909310375152731} a^{9} - \frac{104212917291410479322049371420246980211818}{561034684070749862481847410909310375152731} a^{8} - \frac{424592141601804932441790975776204314729}{561034684070749862481847410909310375152731} a^{7} + \frac{66486652213222665175011667840241969387433}{561034684070749862481847410909310375152731} a^{6} - \frac{48569627133344085361225689105779739718918}{561034684070749862481847410909310375152731} a^{5} - \frac{212994990657287635554080598122978358620432}{561034684070749862481847410909310375152731} a^{4} - \frac{142838332387389987685664468307556515912621}{561034684070749862481847410909310375152731} a^{3} - \frac{111625143178480064936161787665248779052898}{561034684070749862481847410909310375152731} a^{2} + \frac{18048977935636737412591779347981172062741}{561034684070749862481847410909310375152731} a + \frac{7308429899422233610569251835537483130491}{561034684070749862481847410909310375152731}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12045126.3727 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times \PSL(2,7)$ (as 21T22):
| A non-solvable group of order 504 |
| The 18 conjugacy class representatives for $C_3\times \PSL(2,7)$ |
| Character table for $C_3\times \PSL(2,7)$ |
Intermediate fields
| 3.3.169.1, 7.3.2007889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.12.10.5 | $x^{12} + 65 x^{6} + 1352$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |
| 109 | Data not computed | ||||||