Normalized defining polynomial
\( x^{21} - 2 x^{20} - 10 x^{19} + 31 x^{18} - 24 x^{17} - 152 x^{16} + 288 x^{15} + 7 x^{14} - 127 x^{13} + 465 x^{12} - 466 x^{11} + 1998 x^{10} + 1430 x^{9} + 2635 x^{8} + 613 x^{7} - 570 x^{6} - 1087 x^{5} - 669 x^{4} + 195 x^{3} + 193 x^{2} + 93 x - 53 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1115970269016553289813936756281=13^{16}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{91} a^{18} - \frac{3}{7} a^{17} + \frac{19}{91} a^{16} + \frac{25}{91} a^{15} - \frac{34}{91} a^{14} + \frac{20}{91} a^{13} - \frac{16}{91} a^{12} + \frac{36}{91} a^{11} - \frac{3}{13} a^{10} - \frac{2}{7} a^{9} + \frac{45}{91} a^{8} - \frac{17}{91} a^{7} + \frac{23}{91} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} + \frac{30}{91} a^{3} - \frac{3}{7} a^{2} + \frac{45}{91} a - \frac{34}{91}$, $\frac{1}{2821} a^{19} + \frac{12}{2821} a^{18} - \frac{787}{2821} a^{17} - \frac{1}{403} a^{16} + \frac{58}{2821} a^{15} - \frac{258}{2821} a^{14} + \frac{549}{2821} a^{13} + \frac{1}{7} a^{12} + \frac{814}{2821} a^{11} - \frac{1097}{2821} a^{10} - \frac{183}{403} a^{9} - \frac{907}{2821} a^{8} + \frac{1158}{2821} a^{7} - \frac{1245}{2821} a^{6} - \frac{83}{217} a^{5} + \frac{1356}{2821} a^{4} + \frac{148}{403} a^{3} + \frac{1059}{2821} a^{2} - \frac{145}{403} a - \frac{824}{2821}$, $\frac{1}{25006353731497176699208474054219} a^{20} + \frac{241112615084148571705637632}{3572336247356739528458353436317} a^{19} - \frac{102143917139276008402777142270}{25006353731497176699208474054219} a^{18} + \frac{7449328112654443117140104550668}{25006353731497176699208474054219} a^{17} - \frac{11404474528755787395557428268419}{25006353731497176699208474054219} a^{16} + \frac{1641532436888432041080912398212}{25006353731497176699208474054219} a^{15} + \frac{10484042046863781708727631375540}{25006353731497176699208474054219} a^{14} - \frac{3885425715994176304961429075043}{25006353731497176699208474054219} a^{13} + \frac{94726260148737950153321014213}{3572336247356739528458353436317} a^{12} - \frac{5626499710894136407172990839062}{25006353731497176699208474054219} a^{11} + \frac{7724012769405762688251529811028}{25006353731497176699208474054219} a^{10} - \frac{4857959118669862019201900002764}{25006353731497176699208474054219} a^{9} - \frac{7109793771972959040372975841024}{25006353731497176699208474054219} a^{8} - \frac{4194418937610566369617900301252}{25006353731497176699208474054219} a^{7} - \frac{4315965996778192541461172751482}{25006353731497176699208474054219} a^{6} + \frac{626128032786352072232834880696}{25006353731497176699208474054219} a^{5} + \frac{1420868512292147003680867728135}{3572336247356739528458353436317} a^{4} + \frac{10291304998882618078663981009910}{25006353731497176699208474054219} a^{3} - \frac{7782814839655357219059489017642}{25006353731497176699208474054219} a^{2} + \frac{7400382629978737062935451565822}{25006353731497176699208474054219} a - \frac{5843224372491922452979579657270}{25006353731497176699208474054219}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12045126.3727 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times \PSL(2,7)$ (as 21T22):
| A non-solvable group of order 504 |
| The 18 conjugacy class representatives for $C_3\times \PSL(2,7)$ |
| Character table for $C_3\times \PSL(2,7)$ |
Intermediate fields
| 3.3.169.1, 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.12.10.5 | $x^{12} + 65 x^{6} + 1352$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |