Normalized defining polynomial
\( x^{21} - 2 x^{20} - 2 x^{19} + 16 x^{18} - 8 x^{17} - 68 x^{16} - 150 x^{15} + 164 x^{14} + 240 x^{13} - 62 x^{12} - 256 x^{11} + 30 x^{10} + 512 x^{9} - 436 x^{8} - 114 x^{7} + 216 x^{6} - 44 x^{5} - 44 x^{4} - 2 x^{3} + 20 x^{2} + 4 x - 2 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101010740538307114619974951370752=2^{20}\cdot 37^{7}\cdot 317^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 317$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{9}{23} a^{17} + \frac{8}{23} a^{16} + \frac{11}{23} a^{15} - \frac{6}{23} a^{13} + \frac{5}{23} a^{12} - \frac{6}{23} a^{11} - \frac{11}{23} a^{10} + \frac{4}{23} a^{9} - \frac{8}{23} a^{8} + \frac{9}{23} a^{7} - \frac{8}{23} a^{6} + \frac{3}{23} a^{5} + \frac{11}{23} a^{4} - \frac{5}{23} a^{3} + \frac{11}{23} a^{2} + \frac{7}{23} a - \frac{5}{23}$, $\frac{1}{23} a^{19} - \frac{4}{23} a^{17} + \frac{8}{23} a^{16} - \frac{7}{23} a^{15} - \frac{6}{23} a^{14} - \frac{10}{23} a^{13} - \frac{5}{23} a^{12} - \frac{3}{23} a^{11} + \frac{11}{23} a^{10} + \frac{2}{23} a^{9} - \frac{11}{23} a^{8} + \frac{3}{23} a^{7} + \frac{6}{23} a^{6} + \frac{7}{23} a^{5} + \frac{11}{23} a^{4} + \frac{10}{23} a^{3} + \frac{1}{23} a - \frac{1}{23}$, $\frac{1}{7744957502854682214623} a^{20} - \frac{99578178789063346298}{7744957502854682214623} a^{19} + \frac{32628106331256271483}{7744957502854682214623} a^{18} + \frac{208179353027428409385}{7744957502854682214623} a^{17} - \frac{1027882145020108213326}{7744957502854682214623} a^{16} + \frac{417553901799366262231}{7744957502854682214623} a^{15} - \frac{2348950669204722829139}{7744957502854682214623} a^{14} - \frac{2733828177458335492697}{7744957502854682214623} a^{13} - \frac{1974577913168800055175}{7744957502854682214623} a^{12} + \frac{1194524038124819500668}{7744957502854682214623} a^{11} + \frac{1086125776900355155498}{7744957502854682214623} a^{10} - \frac{47888078992751603401}{336737282732812270201} a^{9} - \frac{3197378435173799952780}{7744957502854682214623} a^{8} + \frac{1064845409467585898486}{7744957502854682214623} a^{7} + \frac{3814233299458699333962}{7744957502854682214623} a^{6} + \frac{1959447442667588254768}{7744957502854682214623} a^{5} + \frac{2755963021926250092254}{7744957502854682214623} a^{4} + \frac{478582579477086166397}{7744957502854682214623} a^{3} + \frac{318027670202386705215}{7744957502854682214623} a^{2} + \frac{3087973011129777697426}{7744957502854682214623} a + \frac{2649059898048818698076}{7744957502854682214623}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 241328139.391 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1008 |
| The 18 conjugacy class representatives for t21n27 |
| Character table for t21n27 |
Intermediate fields
| 3.3.148.1, 7.3.6431296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.7.0.1 | $x^{7} - 4 x + 5$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 317 | Data not computed | ||||||