Normalized defining polynomial
\( x^{21} + 42 x^{19} - 28 x^{18} + 684 x^{17} - 912 x^{16} + 5650 x^{15} - 10692 x^{14} + 26487 x^{13} - 53208 x^{12} + 70578 x^{11} - 86124 x^{10} + 39950 x^{9} + 136296 x^{8} - 385146 x^{7} + 670452 x^{6} - 918216 x^{5} + 899856 x^{4} - 578784 x^{3} + 229824 x^{2} - 51072 x + 4864 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9349065598444321497834811261162853782096183296=-\,2^{45}\cdot 3^{21}\cdot 19^{2}\cdot 251\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $154.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 251, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{3}{32} a^{14} + \frac{3}{8} a^{13} + \frac{7}{16} a^{12} + \frac{3}{8} a^{11} - \frac{15}{32} a^{10} - \frac{1}{8} a^{9} - \frac{9}{64} a^{8} + \frac{13}{32} a^{7} + \frac{3}{32} a^{6} + \frac{1}{8} a^{5} - \frac{1}{32} a^{4} + \frac{3}{16} a^{3} + \frac{15}{32} a^{2} - \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{512} a^{17} + \frac{1}{256} a^{15} + \frac{9}{128} a^{14} - \frac{29}{128} a^{13} - \frac{11}{32} a^{12} - \frac{55}{256} a^{11} - \frac{33}{128} a^{10} + \frac{231}{512} a^{9} + \frac{9}{64} a^{8} - \frac{3}{256} a^{7} - \frac{43}{128} a^{6} - \frac{89}{256} a^{5} - \frac{23}{64} a^{4} - \frac{101}{256} a^{3} + \frac{61}{128} a^{2} - \frac{19}{64} a - \frac{1}{32}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} + \frac{1}{2048} a^{16} - \frac{27}{512} a^{15} - \frac{11}{1024} a^{14} + \frac{13}{512} a^{13} + \frac{793}{2048} a^{12} + \frac{21}{128} a^{11} + \frac{479}{4096} a^{10} - \frac{501}{2048} a^{9} - \frac{955}{2048} a^{8} - \frac{183}{512} a^{7} - \frac{5}{2048} a^{6} + \frac{505}{1024} a^{5} + \frac{483}{2048} a^{4} - \frac{37}{128} a^{3} - \frac{107}{256} a^{2} + \frac{3}{64} a + \frac{31}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{5}{16384} a^{17} - \frac{57}{8192} a^{16} + \frac{313}{8192} a^{15} - \frac{489}{2048} a^{14} - \frac{1567}{16384} a^{13} - \frac{163}{8192} a^{12} - \frac{7649}{32768} a^{11} - \frac{969}{8192} a^{10} + \frac{3}{16384} a^{9} - \frac{573}{8192} a^{8} + \frac{2339}{16384} a^{7} - \frac{319}{1024} a^{6} - \frac{5577}{16384} a^{5} + \frac{1327}{8192} a^{4} - \frac{175}{2048} a^{3} - \frac{313}{1024} a^{2} - \frac{133}{1024} a + \frac{35}{512}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} - \frac{9}{131072} a^{18} - \frac{31}{32768} a^{17} + \frac{199}{65536} a^{16} + \frac{1383}{32768} a^{15} + \frac{6993}{131072} a^{14} - \frac{4961}{32768} a^{13} - \frac{8953}{262144} a^{12} - \frac{9587}{131072} a^{11} - \frac{3873}{131072} a^{10} - \frac{8477}{32768} a^{9} - \frac{49105}{131072} a^{8} - \frac{28885}{65536} a^{7} + \frac{16983}{131072} a^{6} - \frac{6221}{32768} a^{5} - \frac{11311}{32768} a^{4} - \frac{61}{1024} a^{3} - \frac{759}{8192} a^{2} - \frac{305}{2048} a - \frac{477}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11194434650800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.7 | $x^{6} + 2 x^{5} + 4 x^{3} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.8.25.56 | $x^{8} + 4 x^{2} + 10$ | $8$ | $1$ | $25$ | $C_2 \wr S_4$ | $[8/3, 8/3, 3, 23/6, 23/6, 17/4]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 19.9.0.1 | $x^{9} + x^{2} - x + 4$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 251 | Data not computed | ||||||
| 809 | Data not computed | ||||||