Normalized defining polynomial
\( x^{21} - 4 x^{20} - 12 x^{19} + 58 x^{18} + 74 x^{17} - 382 x^{16} - 686 x^{15} + 4800 x^{14} - 12932 x^{13} + 28358 x^{12} - 26452 x^{11} - 81018 x^{10} + 310564 x^{9} - 409604 x^{8} + 110816 x^{7} + 349094 x^{6} - 498694 x^{5} + 323368 x^{4} - 122288 x^{3} + 28698 x^{2} - 4026 x + 266 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-887641117397815509982736884947746816=-\,2^{20}\cdot 7^{12}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a^{11} - \frac{1}{11} a^{10} - \frac{5}{11} a^{9} + \frac{3}{11} a^{8} + \frac{4}{11} a^{7} - \frac{5}{11} a^{6} - \frac{1}{11} a^{4} + \frac{1}{11} a^{3} - \frac{5}{11} a^{2} + \frac{4}{11} a + \frac{5}{11}$, $\frac{1}{33} a^{13} + \frac{1}{33} a^{12} - \frac{1}{33} a^{11} - \frac{16}{33} a^{10} + \frac{14}{33} a^{9} + \frac{5}{11} a^{8} - \frac{16}{33} a^{7} + \frac{1}{3} a^{6} + \frac{10}{33} a^{5} + \frac{1}{33} a^{4} - \frac{16}{33} a^{3} + \frac{5}{11} a^{2} + \frac{16}{33} a + \frac{1}{3}$, $\frac{1}{33} a^{14} + \frac{1}{33} a^{12} - \frac{4}{11} a^{11} - \frac{2}{11} a^{10} - \frac{14}{33} a^{9} + \frac{1}{3} a^{8} + \frac{2}{11} a^{7} - \frac{16}{33} a^{6} - \frac{3}{11} a^{5} + \frac{13}{33} a^{4} + \frac{1}{33} a^{3} - \frac{14}{33} a^{2} + \frac{7}{33} a + \frac{4}{33}$, $\frac{1}{33} a^{15} - \frac{1}{33} a^{12} + \frac{7}{33} a^{11} - \frac{10}{33} a^{10} + \frac{1}{11} a^{9} - \frac{2}{11} a^{8} + \frac{5}{11} a^{7} - \frac{14}{33} a^{6} + \frac{1}{11} a^{5} - \frac{4}{11} a^{4} + \frac{14}{33} a^{3} - \frac{2}{33} a^{2} + \frac{1}{11} a + \frac{16}{33}$, $\frac{1}{33} a^{16} - \frac{1}{33} a^{12} + \frac{13}{33} a^{11} - \frac{4}{33} a^{10} - \frac{13}{33} a^{9} + \frac{1}{11} a^{8} - \frac{7}{33} a^{6} - \frac{2}{33} a^{5} - \frac{3}{11} a^{4} + \frac{2}{11} a^{3} - \frac{1}{11} a^{2} - \frac{4}{33} a - \frac{1}{33}$, $\frac{1}{363} a^{17} - \frac{1}{121} a^{16} - \frac{1}{121} a^{15} - \frac{5}{363} a^{14} + \frac{2}{363} a^{13} - \frac{4}{363} a^{12} + \frac{5}{363} a^{11} + \frac{98}{363} a^{10} + \frac{19}{363} a^{9} - \frac{64}{363} a^{8} + \frac{83}{363} a^{7} - \frac{50}{121} a^{6} + \frac{10}{121} a^{5} - \frac{104}{363} a^{4} - \frac{38}{363} a^{3} + \frac{3}{11} a^{2} - \frac{23}{121} a - \frac{170}{363}$, $\frac{1}{1815} a^{18} - \frac{23}{1815} a^{16} - \frac{1}{605} a^{15} + \frac{4}{363} a^{14} + \frac{13}{1815} a^{13} - \frac{62}{1815} a^{12} - \frac{32}{605} a^{11} - \frac{391}{1815} a^{10} - \frac{7}{1815} a^{9} - \frac{68}{363} a^{8} + \frac{23}{165} a^{7} - \frac{46}{1815} a^{6} - \frac{146}{1815} a^{5} + \frac{52}{605} a^{4} - \frac{532}{1815} a^{3} - \frac{289}{1815} a^{2} + \frac{160}{363} a + \frac{524}{1815}$, $\frac{1}{16335} a^{19} - \frac{1}{5445} a^{18} - \frac{13}{16335} a^{17} + \frac{67}{5445} a^{16} - \frac{37}{5445} a^{15} + \frac{233}{16335} a^{14} - \frac{3}{605} a^{13} - \frac{133}{3267} a^{12} + \frac{5447}{16335} a^{11} + \frac{2347}{5445} a^{10} + \frac{2267}{5445} a^{9} + \frac{2026}{5445} a^{8} + \frac{1094}{3267} a^{7} - \frac{3268}{16335} a^{6} + \frac{2113}{5445} a^{5} - \frac{37}{1089} a^{4} - \frac{5728}{16335} a^{3} + \frac{503}{1815} a^{2} + \frac{5684}{16335} a + \frac{2063}{16335}$, $\frac{1}{222313148429753957227965061378245} a^{20} + \frac{4466823482448092491120433809}{222313148429753957227965061378245} a^{19} - \frac{580899445592939768908725656}{2887183745840960483480065732185} a^{18} - \frac{57787583178730844913595322048}{44462629685950791445593012275649} a^{17} + \frac{3539309437384620198705268129}{235252008920374557913190541141} a^{16} + \frac{40443319501112705990341261793}{4042057244177344676872092025059} a^{15} + \frac{490754102160047997091757719303}{44462629685950791445593012275649} a^{14} - \frac{900989872738173200394395865116}{222313148429753957227965061378245} a^{13} + \frac{1370004070568510802545833907786}{74104382809917985742655020459415} a^{12} + \frac{69965309933486695795494650392748}{222313148429753957227965061378245} a^{11} + \frac{776176214414626867138497966869}{2245587357876302598262273347255} a^{10} + \frac{3103344208909223722839359750573}{8233820312213109526961668939935} a^{9} - \frac{1793370746512341687826252191374}{222313148429753957227965061378245} a^{8} + \frac{176487208736017809716347248322}{2245587357876302598262273347255} a^{7} + \frac{84694827735866953623315564432026}{222313148429753957227965061378245} a^{6} + \frac{28146004441826961903125657096432}{74104382809917985742655020459415} a^{5} - \frac{2876642246661313193323263221261}{20210286220886723384360460125295} a^{4} + \frac{41733680658596535214826058064727}{222313148429753957227965061378245} a^{3} + \frac{18299388767215718096753404273642}{44462629685950791445593012275649} a^{2} + \frac{16818249844231863502864156581271}{222313148429753957227965061378245} a + \frac{864269657993175801378743405957}{31759021204250565318280723054035}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16693350374.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times C_7:C_3$ (as 21T11):
| A solvable group of order 126 |
| The 15 conjugacy class representatives for $S_3\times C_7:C_3$ |
| Character table for $S_3\times C_7:C_3$ |
Intermediate fields
| 3.1.44.1, 7.7.272225149504.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | R | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.14.13.2 | $x^{14} + 33$ | $14$ | $1$ | $13$ | $(C_7:C_3) \times C_2$ | $[\ ]_{14}^{3}$ | |