Normalized defining polynomial
\( x^{21} - 6 x^{19} - 24 x^{18} + 262 x^{17} - 1188 x^{16} - 1310 x^{15} + 16498 x^{14} - 8820 x^{13} - 84272 x^{12} + 91788 x^{11} + 198880 x^{10} - 311512 x^{9} - 182624 x^{8} + 380216 x^{7} + 267120 x^{6} + 75760 x^{5} - 599792 x^{4} - 519200 x^{3} + 413824 x^{2} + 381312 x + 45152 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8064534907239574094801006114055662600192=-\,2^{18}\cdot 7^{24}\cdot 107^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{16} a^{19} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{154810680465000707800974664764498606863447838657814343346512} a^{20} - \frac{975590356753943889089939372088260356755991191983427820445}{77405340232500353900487332382249303431723919328907171673256} a^{19} + \frac{398551542760866496849567603588786942126047176496317146735}{38702670116250176950243666191124651715861959664453585836628} a^{18} + \frac{1983631916720639542798045272145263589863774385813352669843}{38702670116250176950243666191124651715861959664453585836628} a^{17} + \frac{265805818117347947505696706612477960794797317663181222713}{9675667529062544237560916547781162928965489916113396459157} a^{16} - \frac{401093509637485461420820249556672122251864835287774639917}{38702670116250176950243666191124651715861959664453585836628} a^{15} + \frac{355978453168095730527168152558393148163276804944645409933}{38702670116250176950243666191124651715861959664453585836628} a^{14} + \frac{6169100583669180892898384549124366414808490800898749583325}{77405340232500353900487332382249303431723919328907171673256} a^{13} - \frac{1397533443107639700087712738343632974374933775628490594299}{38702670116250176950243666191124651715861959664453585836628} a^{12} - \frac{1079620916754153960704360385307253660925104426645348105548}{9675667529062544237560916547781162928965489916113396459157} a^{11} - \frac{549784224833821770770713618926309867490684418033562212311}{38702670116250176950243666191124651715861959664453585836628} a^{10} + \frac{8735941501501209224801908197359196153998251799090943585793}{38702670116250176950243666191124651715861959664453585836628} a^{9} + \frac{4843729648265997157420875362639964601321029553218431350087}{38702670116250176950243666191124651715861959664453585836628} a^{8} - \frac{7948523378302479337685125234940540719803834994838842994271}{38702670116250176950243666191124651715861959664453585836628} a^{7} - \frac{2581554391584780100448129773062717345755877670424306961288}{9675667529062544237560916547781162928965489916113396459157} a^{6} + \frac{1092996333418292154991942152124046856331096031249358178389}{19351335058125088475121833095562325857930979832226792918314} a^{5} + \frac{4652045198069066466685568692460984886282900448176040126797}{9675667529062544237560916547781162928965489916113396459157} a^{4} + \frac{4836057460189419412292030520544469154149273826731510472110}{9675667529062544237560916547781162928965489916113396459157} a^{3} - \frac{2105270989677287582887128288967530206555491110405584343907}{9675667529062544237560916547781162928965489916113396459157} a^{2} + \frac{2875981882701697414853194525297863574200122289832521110618}{9675667529062544237560916547781162928965489916113396459157} a - \frac{2683900955499394215612354227598255634236497011110862681917}{9675667529062544237560916547781162928965489916113396459157}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3153077248290 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 60 conjugacy class representatives for t21n40 are not computed |
| Character table for t21n40 is not computed |
Intermediate fields
| 3.1.107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $107$ | $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 107.2.1.2 | $x^{2} + 321$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.2 | $x^{6} - 11449 x^{2} + 11025387$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |