Properties

Label 21.7.806...192.1
Degree $21$
Signature $[7, 7]$
Discriminant $-8.065\times 10^{39}$
Root discriminant \(79.49\)
Ramified primes $2,7,107$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_7^3:(C_3\times S_3)$ (as 21T40)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152)
 
Copy content gp:K = bnfinit(y^21 - 6*y^19 - 24*y^18 + 262*y^17 - 1188*y^16 - 1310*y^15 + 16498*y^14 - 8820*y^13 - 84272*y^12 + 91788*y^11 + 198880*y^10 - 311512*y^9 - 182624*y^8 + 380216*y^7 + 267120*y^6 + 75760*y^5 - 599792*y^4 - 519200*y^3 + 413824*y^2 + 381312*y + 45152, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152)
 

\( x^{21} - 6 x^{19} - 24 x^{18} + 262 x^{17} - 1188 x^{16} - 1310 x^{15} + 16498 x^{14} - 8820 x^{13} + \cdots + 45152 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[7, 7]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-8064534907239574094801006114055662600192\) \(\medspace = -\,2^{18}\cdot 7^{24}\cdot 107^{7}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(79.49\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{6/7}7^{242/147}107^{1/2}\approx 461.2829834966581$
Ramified primes:   \(2\), \(7\), \(107\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-107}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{4}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{12}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{13}-\frac{1}{2}a^{6}$, $\frac{1}{8}a^{14}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{8}a^{15}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{8}a^{16}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{8}a^{17}-\frac{1}{4}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{16}a^{18}-\frac{1}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{16}a^{19}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{15\cdots 12}a^{20}-\frac{97\cdots 45}{77\cdots 56}a^{19}+\frac{39\cdots 35}{38\cdots 28}a^{18}+\frac{19\cdots 43}{38\cdots 28}a^{17}+\frac{26\cdots 13}{96\cdots 57}a^{16}-\frac{40\cdots 17}{38\cdots 28}a^{15}+\frac{35\cdots 33}{38\cdots 28}a^{14}+\frac{61\cdots 25}{77\cdots 56}a^{13}-\frac{13\cdots 99}{38\cdots 28}a^{12}-\frac{10\cdots 48}{96\cdots 57}a^{11}-\frac{54\cdots 11}{38\cdots 28}a^{10}+\frac{87\cdots 93}{38\cdots 28}a^{9}+\frac{48\cdots 87}{38\cdots 28}a^{8}-\frac{79\cdots 71}{38\cdots 28}a^{7}-\frac{25\cdots 88}{96\cdots 57}a^{6}+\frac{10\cdots 89}{19\cdots 14}a^{5}+\frac{46\cdots 97}{96\cdots 57}a^{4}+\frac{48\cdots 10}{96\cdots 57}a^{3}-\frac{21\cdots 07}{96\cdots 57}a^{2}+\frac{28\cdots 18}{96\cdots 57}a-\frac{26\cdots 17}{96\cdots 57}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{14\cdots 97}{59\cdots 52}a^{20}+\frac{59\cdots 73}{23\cdots 08}a^{19}-\frac{25\cdots 45}{23\cdots 08}a^{18}-\frac{19\cdots 11}{29\cdots 26}a^{17}+\frac{64\cdots 59}{11\cdots 04}a^{16}-\frac{26\cdots 11}{11\cdots 04}a^{15}-\frac{15\cdots 05}{29\cdots 26}a^{14}+\frac{38\cdots 11}{11\cdots 04}a^{13}+\frac{61\cdots 81}{59\cdots 52}a^{12}-\frac{20\cdots 31}{11\cdots 04}a^{11}+\frac{33\cdots 15}{59\cdots 52}a^{10}+\frac{25\cdots 71}{59\cdots 52}a^{9}-\frac{53\cdots 81}{14\cdots 63}a^{8}-\frac{24\cdots 77}{59\cdots 52}a^{7}+\frac{15\cdots 11}{29\cdots 26}a^{6}+\frac{49\cdots 94}{14\cdots 63}a^{5}+\frac{19\cdots 59}{29\cdots 26}a^{4}+\frac{66\cdots 38}{14\cdots 63}a^{3}-\frac{10\cdots 16}{14\cdots 63}a^{2}-\frac{81\cdots 36}{14\cdots 63}a+\frac{33\cdots 21}{14\cdots 63}$, $\frac{20\cdots 69}{77\cdots 56}a^{20}-\frac{29\cdots 88}{96\cdots 57}a^{19}-\frac{19\cdots 25}{15\cdots 12}a^{18}-\frac{47\cdots 82}{96\cdots 57}a^{17}+\frac{28\cdots 13}{38\cdots 28}a^{16}-\frac{30\cdots 41}{77\cdots 56}a^{15}+\frac{21\cdots 61}{19\cdots 14}a^{14}+\frac{41\cdots 37}{96\cdots 57}a^{13}-\frac{55\cdots 75}{77\cdots 56}a^{12}-\frac{11\cdots 19}{77\cdots 56}a^{11}+\frac{15\cdots 47}{38\cdots 28}a^{10}+\frac{70\cdots 56}{96\cdots 57}a^{9}-\frac{35\cdots 93}{38\cdots 28}a^{8}+\frac{20\cdots 77}{38\cdots 28}a^{7}+\frac{81\cdots 13}{19\cdots 14}a^{6}+\frac{25\cdots 00}{96\cdots 57}a^{5}-\frac{11\cdots 59}{96\cdots 57}a^{4}-\frac{14\cdots 87}{96\cdots 57}a^{3}+\frac{23\cdots 63}{96\cdots 57}a^{2}+\frac{79\cdots 03}{96\cdots 57}a+\frac{11\cdots 13}{96\cdots 57}$, $\frac{27\cdots 19}{15\cdots 12}a^{20}-\frac{14\cdots 65}{15\cdots 12}a^{19}-\frac{37\cdots 47}{38\cdots 28}a^{18}-\frac{28\cdots 91}{77\cdots 56}a^{17}+\frac{36\cdots 73}{77\cdots 56}a^{16}-\frac{18\cdots 99}{77\cdots 56}a^{15}-\frac{38\cdots 71}{38\cdots 28}a^{14}+\frac{11\cdots 79}{38\cdots 28}a^{13}-\frac{24\cdots 01}{77\cdots 56}a^{12}-\frac{48\cdots 81}{38\cdots 28}a^{11}+\frac{43\cdots 41}{19\cdots 14}a^{10}+\frac{77\cdots 25}{38\cdots 28}a^{9}-\frac{24\cdots 61}{38\cdots 28}a^{8}+\frac{36\cdots 87}{38\cdots 28}a^{7}+\frac{10\cdots 09}{19\cdots 14}a^{6}+\frac{13\cdots 85}{19\cdots 14}a^{5}+\frac{18\cdots 15}{96\cdots 57}a^{4}-\frac{94\cdots 09}{96\cdots 57}a^{3}-\frac{33\cdots 65}{96\cdots 57}a^{2}+\frac{68\cdots 72}{96\cdots 57}a+\frac{10\cdots 12}{96\cdots 57}$, $\frac{40\cdots 55}{77\cdots 56}a^{20}-\frac{19\cdots 65}{15\cdots 12}a^{19}-\frac{19\cdots 53}{77\cdots 56}a^{18}-\frac{49\cdots 83}{77\cdots 56}a^{17}+\frac{15\cdots 34}{96\cdots 57}a^{16}-\frac{73\cdots 25}{77\cdots 56}a^{15}+\frac{37\cdots 47}{38\cdots 28}a^{14}+\frac{71\cdots 83}{77\cdots 56}a^{13}-\frac{18\cdots 57}{77\cdots 56}a^{12}-\frac{90\cdots 83}{38\cdots 28}a^{11}+\frac{24\cdots 99}{19\cdots 14}a^{10}-\frac{12\cdots 45}{38\cdots 28}a^{9}-\frac{29\cdots 26}{96\cdots 57}a^{8}+\frac{53\cdots 55}{19\cdots 14}a^{7}+\frac{23\cdots 13}{96\cdots 57}a^{6}-\frac{50\cdots 89}{19\cdots 14}a^{5}-\frac{26\cdots 37}{19\cdots 14}a^{4}-\frac{19\cdots 85}{96\cdots 57}a^{3}+\frac{22\cdots 35}{96\cdots 57}a^{2}+\frac{34\cdots 58}{96\cdots 57}a-\frac{69\cdots 05}{96\cdots 57}$, $\frac{42\cdots 75}{15\cdots 12}a^{20}-\frac{90\cdots 15}{15\cdots 12}a^{19}-\frac{18\cdots 31}{15\cdots 12}a^{18}-\frac{14\cdots 31}{38\cdots 28}a^{17}+\frac{64\cdots 15}{77\cdots 56}a^{16}-\frac{37\cdots 37}{77\cdots 56}a^{15}+\frac{18\cdots 47}{38\cdots 28}a^{14}+\frac{17\cdots 59}{38\cdots 28}a^{13}-\frac{11\cdots 01}{96\cdots 57}a^{12}-\frac{81\cdots 99}{77\cdots 56}a^{11}+\frac{11\cdots 57}{19\cdots 14}a^{10}-\frac{39\cdots 97}{19\cdots 14}a^{9}-\frac{45\cdots 05}{38\cdots 28}a^{8}+\frac{24\cdots 07}{19\cdots 14}a^{7}+\frac{28\cdots 54}{96\cdots 57}a^{6}-\frac{23\cdots 68}{96\cdots 57}a^{5}-\frac{42\cdots 11}{96\cdots 57}a^{4}-\frac{14\cdots 00}{96\cdots 57}a^{3}+\frac{51\cdots 16}{96\cdots 57}a^{2}+\frac{93\cdots 48}{96\cdots 57}a+\frac{15\cdots 67}{96\cdots 57}$, $\frac{71\cdots 41}{77\cdots 56}a^{20}-\frac{16\cdots 35}{19\cdots 14}a^{19}-\frac{74\cdots 05}{15\cdots 12}a^{18}-\frac{34\cdots 03}{19\cdots 14}a^{17}+\frac{20\cdots 27}{77\cdots 56}a^{16}-\frac{51\cdots 69}{38\cdots 28}a^{15}+\frac{26\cdots 99}{77\cdots 56}a^{14}+\frac{59\cdots 41}{38\cdots 28}a^{13}-\frac{17\cdots 61}{77\cdots 56}a^{12}-\frac{44\cdots 19}{77\cdots 56}a^{11}+\frac{53\cdots 15}{38\cdots 28}a^{10}+\frac{53\cdots 87}{96\cdots 57}a^{9}-\frac{13\cdots 09}{38\cdots 28}a^{8}+\frac{15\cdots 02}{96\cdots 57}a^{7}+\frac{21\cdots 80}{96\cdots 57}a^{6}+\frac{30\cdots 57}{19\cdots 14}a^{5}+\frac{42\cdots 52}{96\cdots 57}a^{4}-\frac{51\cdots 87}{96\cdots 57}a^{3}+\frac{63\cdots 33}{96\cdots 57}a^{2}+\frac{28\cdots 30}{96\cdots 57}a+\frac{41\cdots 73}{96\cdots 57}$, $\frac{28\cdots 07}{15\cdots 12}a^{20}-\frac{36\cdots 91}{15\cdots 12}a^{19}+\frac{53\cdots 47}{77\cdots 56}a^{18}+\frac{18\cdots 59}{77\cdots 56}a^{17}+\frac{40\cdots 73}{77\cdots 56}a^{16}-\frac{98\cdots 42}{96\cdots 57}a^{15}+\frac{37\cdots 79}{77\cdots 56}a^{14}-\frac{96\cdots 31}{19\cdots 14}a^{13}-\frac{32\cdots 73}{77\cdots 56}a^{12}+\frac{13\cdots 03}{96\cdots 57}a^{11}+\frac{25\cdots 69}{38\cdots 28}a^{10}-\frac{77\cdots 10}{96\cdots 57}a^{9}+\frac{14\cdots 95}{38\cdots 28}a^{8}+\frac{18\cdots 29}{96\cdots 57}a^{7}-\frac{12\cdots 27}{96\cdots 57}a^{6}-\frac{13\cdots 59}{96\cdots 57}a^{5}-\frac{79\cdots 80}{96\cdots 57}a^{4}+\frac{58\cdots 79}{96\cdots 57}a^{3}+\frac{29\cdots 36}{96\cdots 57}a^{2}-\frac{48\cdots 73}{96\cdots 57}a-\frac{15\cdots 53}{96\cdots 57}$, $\frac{60\cdots 37}{15\cdots 12}a^{20}-\frac{90\cdots 41}{38\cdots 28}a^{19}-\frac{40\cdots 73}{19\cdots 14}a^{18}-\frac{30\cdots 63}{38\cdots 28}a^{17}+\frac{20\cdots 47}{19\cdots 14}a^{16}-\frac{20\cdots 07}{38\cdots 28}a^{15}-\frac{65\cdots 55}{38\cdots 28}a^{14}+\frac{49\cdots 15}{77\cdots 56}a^{13}-\frac{28\cdots 39}{38\cdots 28}a^{12}-\frac{10\cdots 65}{38\cdots 28}a^{11}+\frac{20\cdots 43}{38\cdots 28}a^{10}+\frac{15\cdots 29}{38\cdots 28}a^{9}-\frac{54\cdots 97}{38\cdots 28}a^{8}+\frac{10\cdots 13}{38\cdots 28}a^{7}+\frac{23\cdots 17}{19\cdots 14}a^{6}+\frac{40\cdots 27}{19\cdots 14}a^{5}+\frac{44\cdots 89}{19\cdots 14}a^{4}-\frac{21\cdots 09}{96\cdots 57}a^{3}-\frac{27\cdots 55}{96\cdots 57}a^{2}+\frac{17\cdots 47}{96\cdots 57}a+\frac{24\cdots 63}{96\cdots 57}$, $\frac{34\cdots 35}{15\cdots 12}a^{20}-\frac{48\cdots 41}{19\cdots 14}a^{19}-\frac{42\cdots 39}{38\cdots 28}a^{18}-\frac{32\cdots 85}{77\cdots 56}a^{17}+\frac{24\cdots 39}{38\cdots 28}a^{16}-\frac{26\cdots 07}{77\cdots 56}a^{15}+\frac{28\cdots 99}{38\cdots 28}a^{14}+\frac{28\cdots 49}{77\cdots 56}a^{13}-\frac{58\cdots 59}{96\cdots 57}a^{12}-\frac{12\cdots 14}{96\cdots 57}a^{11}+\frac{34\cdots 14}{96\cdots 57}a^{10}+\frac{12\cdots 39}{19\cdots 14}a^{9}-\frac{15\cdots 79}{19\cdots 14}a^{8}+\frac{19\cdots 91}{38\cdots 28}a^{7}+\frac{35\cdots 11}{96\cdots 57}a^{6}+\frac{11\cdots 87}{96\cdots 57}a^{5}+\frac{46\cdots 17}{96\cdots 57}a^{4}-\frac{13\cdots 35}{96\cdots 57}a^{3}+\frac{38\cdots 84}{96\cdots 57}a^{2}+\frac{58\cdots 73}{96\cdots 57}a+\frac{90\cdots 90}{96\cdots 57}$, $\frac{90\cdots 81}{15\cdots 12}a^{20}-\frac{86\cdots 59}{15\cdots 12}a^{19}-\frac{11\cdots 71}{38\cdots 28}a^{18}-\frac{10\cdots 28}{96\cdots 57}a^{17}+\frac{12\cdots 37}{77\cdots 56}a^{16}-\frac{66\cdots 05}{77\cdots 56}a^{15}+\frac{35\cdots 99}{77\cdots 56}a^{14}+\frac{37\cdots 63}{38\cdots 28}a^{13}-\frac{11\cdots 69}{77\cdots 56}a^{12}-\frac{13\cdots 41}{38\cdots 28}a^{11}+\frac{17\cdots 51}{19\cdots 14}a^{10}+\frac{12\cdots 43}{38\cdots 28}a^{9}-\frac{41\cdots 91}{19\cdots 14}a^{8}+\frac{99\cdots 67}{96\cdots 57}a^{7}+\frac{24\cdots 03}{19\cdots 14}a^{6}+\frac{20\cdots 32}{96\cdots 57}a^{5}+\frac{31\cdots 03}{96\cdots 57}a^{4}-\frac{35\cdots 01}{96\cdots 57}a^{3}+\frac{29\cdots 27}{96\cdots 57}a^{2}+\frac{20\cdots 95}{96\cdots 57}a+\frac{27\cdots 87}{96\cdots 57}$, $\frac{26\cdots 49}{15\cdots 12}a^{20}-\frac{16\cdots 67}{15\cdots 12}a^{19}-\frac{75\cdots 37}{77\cdots 56}a^{18}-\frac{27\cdots 95}{77\cdots 56}a^{17}+\frac{92\cdots 65}{19\cdots 14}a^{16}-\frac{22\cdots 02}{96\cdots 57}a^{15}-\frac{60\cdots 27}{77\cdots 56}a^{14}+\frac{11\cdots 67}{38\cdots 28}a^{13}-\frac{26\cdots 63}{77\cdots 56}a^{12}-\frac{12\cdots 50}{96\cdots 57}a^{11}+\frac{45\cdots 17}{19\cdots 14}a^{10}+\frac{75\cdots 19}{38\cdots 28}a^{9}-\frac{25\cdots 35}{38\cdots 28}a^{8}+\frac{19\cdots 69}{19\cdots 14}a^{7}+\frac{11\cdots 65}{19\cdots 14}a^{6}+\frac{94\cdots 19}{96\cdots 57}a^{5}+\frac{79\cdots 49}{96\cdots 57}a^{4}-\frac{10\cdots 25}{96\cdots 57}a^{3}-\frac{22\cdots 13}{96\cdots 57}a^{2}+\frac{83\cdots 33}{96\cdots 57}a+\frac{12\cdots 03}{96\cdots 57}$, $\frac{42\cdots 47}{19\cdots 14}a^{20}-\frac{40\cdots 53}{38\cdots 28}a^{19}-\frac{18\cdots 03}{15\cdots 12}a^{18}-\frac{35\cdots 27}{77\cdots 56}a^{17}+\frac{11\cdots 35}{19\cdots 14}a^{16}-\frac{11\cdots 23}{38\cdots 28}a^{15}-\frac{10\cdots 63}{77\cdots 56}a^{14}+\frac{70\cdots 47}{19\cdots 14}a^{13}-\frac{29\cdots 41}{77\cdots 56}a^{12}-\frac{12\cdots 81}{77\cdots 56}a^{11}+\frac{10\cdots 71}{38\cdots 28}a^{10}+\frac{97\cdots 77}{38\cdots 28}a^{9}-\frac{30\cdots 25}{38\cdots 28}a^{8}+\frac{18\cdots 23}{19\cdots 14}a^{7}+\frac{70\cdots 62}{96\cdots 57}a^{6}+\frac{12\cdots 71}{96\cdots 57}a^{5}+\frac{26\cdots 43}{19\cdots 14}a^{4}-\frac{11\cdots 60}{96\cdots 57}a^{3}-\frac{18\cdots 63}{96\cdots 57}a^{2}+\frac{10\cdots 89}{96\cdots 57}a+\frac{22\cdots 19}{96\cdots 57}$, $\frac{50\cdots 33}{77\cdots 56}a^{20}-\frac{17\cdots 15}{38\cdots 28}a^{19}-\frac{54\cdots 11}{15\cdots 12}a^{18}-\frac{25\cdots 33}{19\cdots 14}a^{17}+\frac{17\cdots 50}{96\cdots 57}a^{16}-\frac{69\cdots 11}{77\cdots 56}a^{15}-\frac{15\cdots 39}{77\cdots 56}a^{14}+\frac{41\cdots 75}{38\cdots 28}a^{13}-\frac{10\cdots 95}{77\cdots 56}a^{12}-\frac{34\cdots 45}{77\cdots 56}a^{11}+\frac{17\cdots 11}{19\cdots 14}a^{10}+\frac{12\cdots 29}{19\cdots 14}a^{9}-\frac{23\cdots 76}{96\cdots 57}a^{8}+\frac{51\cdots 99}{96\cdots 57}a^{7}+\frac{39\cdots 85}{19\cdots 14}a^{6}+\frac{37\cdots 55}{96\cdots 57}a^{5}+\frac{37\cdots 05}{19\cdots 14}a^{4}-\frac{38\cdots 24}{96\cdots 57}a^{3}-\frac{55\cdots 80}{96\cdots 57}a^{2}+\frac{29\cdots 71}{96\cdots 57}a+\frac{40\cdots 21}{96\cdots 57}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3153077248290 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 3153077248290 \cdot 1}{2\cdot\sqrt{8064534907239574094801006114055662600192}}\cr\approx \mathstrut & 0.868728361560060 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 6*x^19 - 24*x^18 + 262*x^17 - 1188*x^16 - 1310*x^15 + 16498*x^14 - 8820*x^13 - 84272*x^12 + 91788*x^11 + 198880*x^10 - 311512*x^9 - 182624*x^8 + 380216*x^7 + 267120*x^6 + 75760*x^5 - 599792*x^4 - 519200*x^3 + 413824*x^2 + 381312*x + 45152); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7^3:(C_3\times S_3)$ (as 21T40):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 6174
The 60 conjugacy class representatives for $C_7^3:(C_3\times S_3)$
Character table for $C_7^3:(C_3\times S_3)$

Intermediate fields

3.1.107.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 21 siblings: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $21$ ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ R $21$ $21$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $21$ $21$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $21$ $21$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.3.0.1}{3} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ $21$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.7.6a1.1$x^{7} + 2$$7$$1$$6$$C_7:C_3$$$[\ ]_{7}^{3}$$
2.2.7.12a1.1$x^{14} + 7 x^{13} + 28 x^{12} + 77 x^{11} + 161 x^{10} + 266 x^{9} + 357 x^{8} + 393 x^{7} + 357 x^{6} + 266 x^{5} + 161 x^{4} + 77 x^{3} + 28 x^{2} + 7 x + 3$$7$$2$$12$$(C_7:C_3) \times C_2$$$[\ ]_{7}^{6}$$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$$[\ ]$$
7.1.3.2a1.1$x^{3} + 7$$3$$1$$2$$C_3$$$[\ ]_{3}$$
7.1.3.2a1.1$x^{3} + 7$$3$$1$$2$$C_3$$$[\ ]_{3}$$
7.2.7.20a14.1$x^{14} + 42 x^{13} + 777 x^{12} + 8316 x^{11} + 56889 x^{10} + 259707 x^{9} + 804363 x^{8} + 1696428 x^{7} + 2443707 x^{6} + 2438100 x^{5} + 1715175 x^{4} + 852768 x^{3} + 288603 x^{2} + 59535 x + 5596$$7$$2$$20$14T14$$[\frac{5}{3}, \frac{5}{3}]_{3}^{2}$$
\(107\) Copy content Toggle raw display $\Q_{107}$$x + 105$$1$$1$$0$Trivial$$[\ ]$$
107.1.2.1a1.1$x^{2} + 107$$2$$1$$1$$C_2$$$[\ ]_{2}$$
107.3.1.0a1.1$x^{3} + 5 x + 105$$1$$3$$0$$C_3$$$[\ ]^{3}$$
107.3.1.0a1.1$x^{3} + 5 x + 105$$1$$3$$0$$C_3$$$[\ ]^{3}$$
107.3.2.3a1.2$x^{6} + 10 x^{4} + 210 x^{3} + 25 x^{2} + 1050 x + 11132$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
107.3.2.3a1.2$x^{6} + 10 x^{4} + 210 x^{3} + 25 x^{2} + 1050 x + 11132$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)