Normalized defining polynomial
\( x^{21} - 21 x^{19} - 5 x^{18} + 189 x^{17} + 90 x^{16} - 1177 x^{15} - 675 x^{14} + 6315 x^{13} + 1984 x^{12} - 25983 x^{11} + 2517 x^{10} + 76399 x^{9} - 31374 x^{8} - 174051 x^{7} + 139683 x^{6} + 290088 x^{5} - 453996 x^{4} - 67056 x^{3} + 594000 x^{2} - 499968 x + 147136 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8026392053570511333903758817888858066542592=-\,2^{13}\cdot 3^{21}\cdot 97\cdot 149^{6}\cdot 211^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 97, 149, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} + \frac{3}{8} a^{4} - \frac{7}{16} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{7}{16} a^{4} + \frac{3}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} - \frac{1}{8} a^{7} + \frac{3}{32} a^{6} + \frac{3}{32} a^{5} - \frac{1}{16} a^{4} - \frac{11}{32} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{9} + \frac{1}{32} a^{8} + \frac{3}{64} a^{7} - \frac{3}{32} a^{6} + \frac{11}{64} a^{5} - \frac{31}{64} a^{4} - \frac{27}{64} a^{3} - \frac{3}{32} a^{2} + \frac{3}{16} a - \frac{3}{8}$, $\frac{1}{64} a^{13} + \frac{1}{64} a^{10} - \frac{1}{32} a^{9} + \frac{3}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{64} a^{6} - \frac{11}{64} a^{5} + \frac{13}{64} a^{4} - \frac{13}{32} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} + \frac{1}{128} a^{11} + \frac{1}{128} a^{10} + \frac{1}{128} a^{9} + \frac{7}{128} a^{8} + \frac{1}{128} a^{7} - \frac{5}{64} a^{6} - \frac{3}{32} a^{5} - \frac{43}{128} a^{4} - \frac{23}{64} a^{3} - \frac{5}{32} a^{2} - \frac{1}{16} a$, $\frac{1}{256} a^{15} + \frac{1}{256} a^{13} - \frac{1}{256} a^{12} + \frac{1}{128} a^{11} + \frac{1}{64} a^{10} - \frac{3}{128} a^{9} + \frac{5}{128} a^{8} + \frac{21}{256} a^{7} - \frac{1}{64} a^{6} + \frac{5}{256} a^{5} + \frac{47}{256} a^{4} - \frac{5}{32} a^{3} + \frac{3}{32} a^{2} + \frac{1}{16} a - \frac{5}{16}$, $\frac{1}{256} a^{16} - \frac{1}{256} a^{14} + \frac{1}{256} a^{13} - \frac{1}{128} a^{12} + \frac{1}{128} a^{11} - \frac{1}{32} a^{10} + \frac{1}{64} a^{9} - \frac{1}{256} a^{8} - \frac{9}{128} a^{7} - \frac{15}{256} a^{6} + \frac{27}{256} a^{5} + \frac{21}{128} a^{4} - \frac{3}{8} a^{3} + \frac{1}{16} a^{2} + \frac{5}{16} a - \frac{1}{8}$, $\frac{1}{512} a^{17} - \frac{1}{512} a^{16} - \frac{1}{512} a^{15} - \frac{1}{256} a^{14} + \frac{1}{512} a^{13} - \frac{1}{128} a^{12} + \frac{1}{256} a^{11} - \frac{1}{64} a^{10} - \frac{1}{512} a^{9} + \frac{3}{512} a^{8} - \frac{57}{512} a^{7} + \frac{9}{256} a^{6} + \frac{55}{512} a^{5} - \frac{99}{256} a^{4} - \frac{1}{32} a^{3} - \frac{5}{16} a^{2} + \frac{1}{32} a - \frac{5}{16}$, $\frac{1}{1024} a^{18} - \frac{1}{512} a^{16} + \frac{1}{1024} a^{15} - \frac{1}{1024} a^{14} - \frac{7}{1024} a^{13} + \frac{1}{512} a^{12} + \frac{1}{512} a^{11} + \frac{31}{1024} a^{10} + \frac{1}{512} a^{9} - \frac{27}{512} a^{8} - \frac{75}{1024} a^{7} + \frac{113}{1024} a^{6} + \frac{245}{1024} a^{5} + \frac{19}{512} a^{4} - \frac{31}{128} a^{3} - \frac{11}{32} a^{2} - \frac{27}{64} a - \frac{9}{32}$, $\frac{1}{1024} a^{19} - \frac{1}{1024} a^{16} + \frac{1}{1024} a^{15} - \frac{3}{1024} a^{14} + \frac{3}{512} a^{12} - \frac{13}{1024} a^{11} + \frac{5}{512} a^{10} + \frac{1}{128} a^{9} - \frac{5}{1024} a^{8} + \frac{75}{1024} a^{7} - \frac{39}{1024} a^{6} - \frac{25}{128} a^{5} - \frac{13}{64} a^{4} - \frac{1}{16} a^{3} + \frac{15}{64} a^{2} + \frac{3}{16} a$, $\frac{1}{2048} a^{20} - \frac{1}{2048} a^{19} - \frac{1}{2048} a^{17} - \frac{1}{1024} a^{16} - \frac{1}{2048} a^{14} - \frac{1}{1024} a^{13} - \frac{15}{2048} a^{12} + \frac{15}{2048} a^{11} - \frac{21}{1024} a^{10} - \frac{29}{2048} a^{9} + \frac{21}{512} a^{8} - \frac{63}{1024} a^{7} + \frac{43}{2048} a^{6} - \frac{13}{128} a^{5} + \frac{123}{512} a^{4} - \frac{5}{64} a^{3} + \frac{25}{128} a^{2} - \frac{1}{4} a + \frac{1}{32}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58510470637000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $21$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.9 | $x^{10} - 15 x^{8} + 38 x^{6} - 18 x^{4} + 25 x^{2} - 63$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 149 | Data not computed | ||||||
| 211 | Data not computed | ||||||