Normalized defining polynomial
\( x^{21} + 7 x^{19} - 70 x^{17} - 651 x^{15} - 106 x^{14} + 147 x^{13} + 1106 x^{12} + 12593 x^{11} + 11676 x^{10} + 28469 x^{9} - 1918 x^{8} - 7394 x^{7} - 60760 x^{6} - 185780 x^{5} + 120540 x^{4} + 233205 x^{3} + 168070 x^{2} - 432040 x + 140680 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7789572797838822254025630224384000000=-\,2^{18}\cdot 5^{6}\cdot 7^{21}\cdot 23^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} + \frac{2}{7}$, $\frac{1}{7} a^{8} + \frac{2}{7} a$, $\frac{1}{7} a^{9} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{10} + \frac{2}{7} a^{3}$, $\frac{1}{7} a^{11} + \frac{2}{7} a^{4}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{5}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{11} - \frac{1}{14} a^{9} - \frac{1}{14} a^{7} + \frac{1}{7} a^{6} - \frac{1}{2} a^{5} - \frac{1}{7} a^{4} - \frac{1}{2} a^{3} - \frac{1}{7} a^{2} - \frac{1}{2} a - \frac{1}{7}$, $\frac{1}{98} a^{14} - \frac{1}{14} a^{12} - \frac{1}{14} a^{10} - \frac{1}{14} a^{8} + \frac{2}{49} a^{7} - \frac{1}{2} a^{6} - \frac{1}{7} a^{5} - \frac{1}{2} a^{4} - \frac{1}{7} a^{3} - \frac{1}{2} a^{2} - \frac{1}{7} a + \frac{2}{49}$, $\frac{1}{98} a^{15} + \frac{2}{49} a^{8} - \frac{45}{98} a$, $\frac{1}{98} a^{16} + \frac{2}{49} a^{9} - \frac{45}{98} a^{2}$, $\frac{1}{98} a^{17} + \frac{2}{49} a^{10} - \frac{45}{98} a^{3}$, $\frac{1}{155722} a^{18} - \frac{290}{77861} a^{17} + \frac{96}{77861} a^{16} - \frac{409}{155722} a^{15} + \frac{246}{77861} a^{14} + \frac{465}{22246} a^{13} + \frac{211}{11123} a^{12} + \frac{5919}{155722} a^{11} + \frac{2438}{77861} a^{10} + \frac{3169}{155722} a^{9} + \frac{3396}{77861} a^{8} - \frac{8511}{155722} a^{7} - \frac{3847}{11123} a^{6} - \frac{5351}{22246} a^{5} + \frac{63823}{155722} a^{4} + \frac{6829}{155722} a^{3} - \frac{25635}{77861} a^{2} - \frac{33011}{77861} a + \frac{5597}{77861}$, $\frac{1}{155722} a^{19} + \frac{330}{77861} a^{17} - \frac{279}{155722} a^{16} + \frac{33}{155722} a^{15} - \frac{583}{155722} a^{14} - \frac{4}{11123} a^{13} + \frac{6297}{155722} a^{12} - \frac{731}{11123} a^{11} - \frac{3527}{155722} a^{10} - \frac{803}{77861} a^{9} + \frac{6019}{155722} a^{8} - \frac{3567}{77861} a^{7} - \frac{2781}{22246} a^{6} - \frac{15879}{155722} a^{5} + \frac{10509}{22246} a^{4} + \frac{3483}{77861} a^{3} - \frac{18737}{77861} a^{2} + \frac{27635}{155722} a + \frac{9467}{77861}$, $\frac{1}{2622369424819691048912857982502380} a^{20} + \frac{947190844004462537173530133}{1311184712409845524456428991251190} a^{19} - \frac{7560019695699056402388869287}{2622369424819691048912857982502380} a^{18} + \frac{359625834715930444804196400277}{187312101772835074922346998750170} a^{17} + \frac{105825829676836464671064471226}{93656050886417537461173499375085} a^{16} + \frac{1472932944861503636930684081}{2888072053766179569287288526985} a^{15} + \frac{7475454265530166557183628626607}{2622369424819691048912857982502380} a^{14} - \frac{6328862762565819881744704599786}{655592356204922762228214495625595} a^{13} - \frac{121961174899888975459280509188687}{2622369424819691048912857982502380} a^{12} - \frac{28563391674169685161662779080979}{655592356204922762228214495625595} a^{11} - \frac{8447035387094672058359538318219}{374624203545670149844693997500340} a^{10} - \frac{5097186905047836771705526392443}{187312101772835074922346998750170} a^{9} - \frac{63319142699761274660920212987953}{2622369424819691048912857982502380} a^{8} + \frac{3925004373159606892239752589016}{655592356204922762228214495625595} a^{7} + \frac{28220216606203782827963161319051}{131118471240984552445642899125119} a^{6} - \frac{39616073239222488274080668689818}{131118471240984552445642899125119} a^{5} + \frac{62458990249042069261889462805963}{131118471240984552445642899125119} a^{4} + \frac{7318856829480350039363592338696}{18731210177283507492234699875017} a^{3} - \frac{34669794205843147833118389067429}{74924840709134029968938799500068} a^{2} - \frac{47182358082368982783336271757682}{131118471240984552445642899125119} a - \frac{37153829954458255165665156578528}{131118471240984552445642899125119}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63196703282.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12348 |
| The 45 conjugacy class representatives for t21n55 |
| Character table for t21n55 is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $21$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |