Normalized defining polynomial
\( x^{21} - x^{20} - 18 x^{19} - 3 x^{18} + 331 x^{17} - 538 x^{16} - 2964 x^{15} + 3682 x^{14} + 20931 x^{13} - 41558 x^{12} - 62536 x^{11} + 203841 x^{10} + 8690 x^{9} - 80214 x^{8} + 106730 x^{7} - 255609 x^{6} + 173098 x^{5} - 478605 x^{4} - 347452 x^{3} + 14115 x^{2} - 174087 x - 60237 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-755870767257884461296368938259663318174024298914692856768=-\,2^{6}\cdot 23^{7}\cdot 3484502293^{2}\cdot 16902292269377^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $511.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 3484502293, 16902292269377$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{19} - \frac{1}{12} a^{18} + \frac{1}{12} a^{15} - \frac{1}{3} a^{14} + \frac{1}{12} a^{12} - \frac{5}{12} a^{10} + \frac{1}{6} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{55754219899674473477522580007584614059966457063844790623348} a^{20} - \frac{1016749433769327947107046595359983731809213141047725530615}{27877109949837236738761290003792307029983228531922395311674} a^{19} + \frac{1500138549353082191678894447586111459996791634587036698529}{18584739966558157825840860002528204686655485687948263541116} a^{18} + \frac{68591370497881944402537701104463283222302700705685451987}{4646184991639539456460215000632051171663871421987065885279} a^{17} + \frac{11598577643623020516555982158714689291001634255343637145795}{55754219899674473477522580007584614059966457063844790623348} a^{16} - \frac{9981233234873718012271889572306481897097947486420695854199}{55754219899674473477522580007584614059966457063844790623348} a^{15} - \frac{988091545259990741037809103417987053161440837903097257539}{4646184991639539456460215000632051171663871421987065885279} a^{14} + \frac{914840424229961375330633011000103315562653249657664355303}{55754219899674473477522580007584614059966457063844790623348} a^{13} + \frac{2579500204964018844892740755211651383796249282382742489365}{6194913322186052608613620000842734895551828562649421180372} a^{12} - \frac{7906010791063901500592125916526709465398490543264395974357}{55754219899674473477522580007584614059966457063844790623348} a^{11} + \frac{2307825114725136229717198686945432894532424862847525212701}{55754219899674473477522580007584614059966457063844790623348} a^{10} - \frac{5982163839112753769100334305920132492967641965683581414743}{18584739966558157825840860002528204686655485687948263541116} a^{9} - \frac{1078372079080526361070139368387412907610871368096036200917}{27877109949837236738761290003792307029983228531922395311674} a^{8} - \frac{168663434654147101607185183752078100277352982585022838603}{1548728330546513152153405000210683723887957140662355295093} a^{7} + \frac{888635903797458557683865295081819186228320781466176090707}{55754219899674473477522580007584614059966457063844790623348} a^{6} + \frac{1165232081641842375759136204550909096110267157170060442924}{4646184991639539456460215000632051171663871421987065885279} a^{5} + \frac{2646102444210713181664519000835400455225536099609946850715}{13938554974918618369380645001896153514991614265961197655837} a^{4} - \frac{2278286280925163286591384454369568299076337072931835315769}{6194913322186052608613620000842734895551828562649421180372} a^{3} - \frac{14063663142364343234536419187881461362795726509923252635273}{55754219899674473477522580007584614059966457063844790623348} a^{2} + \frac{716367672448195922365184242042501008656368370829811091297}{6194913322186052608613620000842734895551828562649421180372} a + \frac{1776600251376320322417029493277013772407108849561624150911}{6194913322186052608613620000842734895551828562649421180372}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 464155035925000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 96018048000 |
| The 255 conjugacy class representatives for t21n156 are not computed |
| Character table for t21n156 is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 3484502293 | Data not computed | ||||||
| 16902292269377 | Data not computed | ||||||