Normalized defining polynomial
\( x^{21} - 2 x^{20} + x^{19} - 23 x^{18} - 7 x^{17} + 6 x^{16} + 62 x^{15} + 71 x^{14} + 134 x^{13} - 981 x^{12} + 565 x^{11} + 2065 x^{10} - 3120 x^{9} + 5036 x^{8} - 9383 x^{7} + 9486 x^{6} + 1068 x^{5} - 13797 x^{4} + 16346 x^{3} - 9327 x^{2} + 2191 x - 49 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-75548521976578880970667968954368=-\,2^{18}\cdot 23^{9}\cdot 233^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 233$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{18} + \frac{1}{8} a^{14} + \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} + \frac{3}{8}$, $\frac{1}{536} a^{19} + \frac{33}{536} a^{18} - \frac{19}{268} a^{17} + \frac{6}{67} a^{16} + \frac{11}{536} a^{15} - \frac{105}{536} a^{14} - \frac{131}{536} a^{13} - \frac{79}{536} a^{12} - \frac{183}{536} a^{11} + \frac{41}{536} a^{10} - \frac{31}{268} a^{9} + \frac{13}{134} a^{8} + \frac{117}{268} a^{7} + \frac{91}{268} a^{6} + \frac{63}{536} a^{5} - \frac{195}{536} a^{4} + \frac{225}{536} a^{3} - \frac{155}{536} a^{2} - \frac{181}{536} a - \frac{169}{536}$, $\frac{1}{411355660236508957717988315010413917768} a^{20} - \frac{9002216412809371290333546459240947}{205677830118254478858994157505206958884} a^{19} - \frac{7925925301312362533057162340848397805}{411355660236508957717988315010413917768} a^{18} - \frac{110504211418773422036809923984670393}{51419457529563619714748539376301739721} a^{17} + \frac{6860405185024648247969398033514110819}{58765094319501279673998330715773416824} a^{16} + \frac{5164945304215401082633549576521072223}{102838915059127239429497078752603479442} a^{15} + \frac{7274946754098255153380195891092998603}{102838915059127239429497078752603479442} a^{14} - \frac{1768337808000098406939966246970718196}{51419457529563619714748539376301739721} a^{13} + \frac{6729849480322269294318536939464760923}{205677830118254478858994157505206958884} a^{12} + \frac{99856520797461609996623193520787283355}{205677830118254478858994157505206958884} a^{11} + \frac{98377888313402239487250497634331911019}{411355660236508957717988315010413917768} a^{10} - \frac{1661379966869409357146673378013511258}{7345636789937659959249791339471677103} a^{9} + \frac{12705286578741632902694388435679688777}{102838915059127239429497078752603479442} a^{8} - \frac{32951001889209675521259825186138429461}{205677830118254478858994157505206958884} a^{7} + \frac{136828497325371986200017347869405153477}{411355660236508957717988315010413917768} a^{6} + \frac{21118105188597377826982037491380537553}{51419457529563619714748539376301739721} a^{5} - \frac{43547236723070594967751865072968097551}{102838915059127239429497078752603479442} a^{4} + \frac{3224660502838296326503383762917234926}{7345636789937659959249791339471677103} a^{3} + \frac{26290002832561914741406730864776536357}{102838915059127239429497078752603479442} a^{2} + \frac{17413695371476794979839132696231389269}{51419457529563619714748539376301739721} a + \frac{21461507120790509750936716794575398365}{58765094319501279673998330715773416824}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136509280.84 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1008 |
| The 18 conjugacy class representatives for t21n27 |
| Character table for t21n27 |
Intermediate fields
| 3.1.23.1, 7.7.1838008384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.18.59 | $x^{12} - 2 x^{11} + 6 x^{10} + 4 x^{9} + 6 x^{8} + 12 x^{7} - 4 x^{6} - 8 x^{3} + 16 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4$ | $[2, 2]^{3}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 233 | Data not computed | ||||||