Normalized defining polynomial
\( x^{21} - x^{20} - 12 x^{19} + 23 x^{18} + 209 x^{17} - 147 x^{16} - 1451 x^{15} + 840 x^{14} + 5070 x^{13} - 2978 x^{12} - 15769 x^{11} + 12105 x^{10} + 20201 x^{9} - 20848 x^{8} - 11002 x^{7} + 12758 x^{6} + 6317 x^{5} + 686 x^{4} - 267 x^{3} - 53 x^{2} + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-716570317313053275835569057448231967=-\,23^{7}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{2}{17} a^{17} - \frac{6}{17} a^{16} - \frac{5}{17} a^{15} + \frac{4}{17} a^{14} - \frac{7}{17} a^{13} + \frac{6}{17} a^{12} + \frac{2}{17} a^{11} - \frac{5}{17} a^{10} + \frac{7}{17} a^{9} + \frac{8}{17} a^{8} + \frac{7}{17} a^{7} + \frac{7}{17} a^{6} + \frac{3}{17} a^{5} + \frac{4}{17} a^{4} + \frac{1}{17} a^{3} - \frac{5}{17}$, $\frac{1}{17} a^{19} + \frac{7}{17} a^{17} + \frac{7}{17} a^{16} - \frac{3}{17} a^{15} + \frac{2}{17} a^{14} + \frac{3}{17} a^{13} + \frac{7}{17} a^{12} + \frac{8}{17} a^{11} - \frac{6}{17} a^{9} + \frac{8}{17} a^{8} - \frac{7}{17} a^{7} + \frac{6}{17} a^{6} - \frac{2}{17} a^{5} - \frac{7}{17} a^{4} - \frac{2}{17} a^{3} - \frac{5}{17} a - \frac{7}{17}$, $\frac{1}{4300901676177655907028730081031261437111} a^{20} - \frac{99618363096501955978464708385159017484}{4300901676177655907028730081031261437111} a^{19} - \frac{66391514802739723763562876618563019732}{4300901676177655907028730081031261437111} a^{18} + \frac{414905401620950753039928462561548298059}{4300901676177655907028730081031261437111} a^{17} - \frac{1725456454724524973397806139660487741844}{4300901676177655907028730081031261437111} a^{16} - \frac{839631401301789252977662954238750806951}{4300901676177655907028730081031261437111} a^{15} - \frac{1584022410536081112801047456685107163446}{4300901676177655907028730081031261437111} a^{14} + \frac{2097148848393437907831753245210804094316}{4300901676177655907028730081031261437111} a^{13} - \frac{1028230881105076513530905676012769448911}{4300901676177655907028730081031261437111} a^{12} - \frac{1942496618578313858844824877206924497712}{4300901676177655907028730081031261437111} a^{11} - \frac{164272405404998040300063060300592007495}{4300901676177655907028730081031261437111} a^{10} + \frac{1646974922317314991166334788648480734637}{4300901676177655907028730081031261437111} a^{9} - \frac{703222909371607025084317285636928556034}{4300901676177655907028730081031261437111} a^{8} - \frac{585536379396221777073057657128506524463}{4300901676177655907028730081031261437111} a^{7} - \frac{1421598045328713009861855684556740823598}{4300901676177655907028730081031261437111} a^{6} + \frac{713449270962229438501324855086253998137}{4300901676177655907028730081031261437111} a^{5} + \frac{159387138690778689448214552798462148329}{4300901676177655907028730081031261437111} a^{4} + \frac{1554249948832599502128931002780188290292}{4300901676177655907028730081031261437111} a^{3} + \frac{1647740871919452047248091932425029462106}{4300901676177655907028730081031261437111} a^{2} + \frac{1593391454076409549809554679358778942017}{4300901676177655907028730081031261437111} a - \frac{1145409105613170481386917022612795686797}{4300901676177655907028730081031261437111}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9787612489.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7\times S_3$ (as 21T6):
| A solvable group of order 42 |
| The 21 conjugacy class representatives for $C_7\times S_3$ |
| Character table for $C_7\times S_3$ is not computed |
Intermediate fields
| 3.1.23.1, 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | R | R | $21$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{21}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 29 | Data not computed | ||||||